- From: Kostiainen, Anssi <anssi.kostiainen@intel.com>
- Date: Thu, 13 Oct 2022 08:59:12 +0000
- To: "public-webmachinelearning-wg@w3.org" <public-webmachinelearning-wg@w3.org>
- Message-ID: <237A18AF-92F7-4627-83D2-14BBC1C32A32@intel.com>
Latest version: https://github.com/webmachinelearning/meetings/blob/main/telcons/2022-10-20-wg-agenda.md WebML WG Teleconference – 20 October 2022 - 14:00-15:00 UTC San Francisco (U.S.A. - California) Thu, 20 October 2022 07:00 UTC-7 hours Boston (U.S.A. - Massachusetts) Thu, 20 October 2022 10:00 UTC-4 hours London (United Kingdom - England) Thu, 20 October 2022 15:00 UTC+1 hours Berlin (Germany) Thu, 20 October 2022 16:00 UTC+2 hours Helsinki (Finland) Thu, 20 October 2022 17:00 UTC+3 hours Shanghai (China) Thu, 20 October 2022 22:00 UTC+8 hours Tokyo (Japan) Thu, 20 October 2022 23:00 UTC+9 hours Corresponding UTC (GMT) Thu, 20 October 2022 14:00 UTC Other locations: https://www.timeanddate.com/worldclock/fixedtime.html?iso=20221020T14 <https://github.com/webmachinelearning/meetings/blob/main/telcons/2022-10-20-wg-agenda.md#logistics>Logistics * Chair: Anssi * Scribe: ? (see howto<https://github.com/webmachinelearning/meetings/blob/main/scribe-howto.md>, volunteers welcome!) * IRC: irc://irc.w3.org:6667/#webmachinelearning * IRC web client: https://irc.w3.org/?channels=#webmachinelearning * Joining instructions: https://lists.w3.org/Archives/Member/internal-webmachinelearning/2020Apr/0000.html * Minutes: https://www.w3.org/2022/10/20-webmachinelearning-minutes.html <https://github.com/webmachinelearning/meetings/blob/main/telcons/2022-10-20-wg-agenda.md#%E2%84%B9%EF%B8%8F-webml-wg-charter-2023-2025-under-development>ℹ️ WebML WG Charter 2023-2025 under development Web Machine Learning Working Group Charter for 2023-2025 is now under development. Please review the draft PR and open issues, provide your comments and open new issues as appropriate to help shape the WG's technical scope. * Announcement https://lists.w3.org/Archives/Public/public-webmachinelearning-wg/2022Oct/0002.html * Charter PR w3c/machine-learning-charter#19<https://github.com/w3c/machine-learning-charter/pull/19> * Open issues https://github.com/w3c/machine-learning-charter/issues * Features deferred to WebNN v2 * Dedicated ML hardware accelerators: NPU, VPU, xPU * Set of ops supported must be more comprehensive * Level of abstraction for neural net operations * WebRTC coordination * WebGPU interoperability <https://github.com/webmachinelearning/meetings/blob/main/telcons/2022-10-20-wg-agenda.md#%E2%84%B9%EF%B8%8F-webnn-api-candidate-recommendation-open-issues>ℹ️ WebNN API Candidate Recommendation open issues Review and discuss the current CR issues, work out a plan to address the issues prior to the expected CR publication. * Current CR issues https://github.com/webmachinelearning/webnn/labels/cr * Web platform tests * Continue discuss w-p-t updates informed by Operator Tolerance Conformance Considerations<https://lists.w3.org/Archives/Public/www-archive/2022Oct/att-0000/DirectML_Operator_Tolerance_Conformance.pdf> presentation * webnn-baseline implementation plan update https://github.com/webmachinelearning/webnn-baseline/issues * ➡️ Status: Recommended tolerances reviewed, w-p-t & webnn-baseline reference impl updates in progress * Add method steps and normative algorithms to operations * issue: webmachinelearning/webnn#210<https://github.com/webmachinelearning/webnn/issues/210> * issue: webmachinelearning/webnn#211<https://github.com/webmachinelearning/webnn/issues/211> * ➡️ Status: Spec changes in progress, review any proposals submitted <https://github.com/webmachinelearning/meetings/blob/main/telcons/2022-10-20-wg-agenda.md#%E2%84%B9%EF%B8%8F-webnn-webgpu-interop>ℹ️ WebNN-WebGPU interop Review WebGPU interop mechanism and its normative WebGPU dependencies to assess whether WebGPU interop is a feasible CR target or a v2 feature. WebNN API interface to record the ML workload onto a WebGPU-compatible GPUCommandBuffer: * MLCommandEncoder https://www.w3.org/TR/webnn/#mlcommandencoder Normative WebGPU API dependencies: * GPUBuffer https://gpuweb.github.io/gpuweb/#buffer-interface * GPUCommandBuffer https://gpuweb.github.io/gpuweb/#command-buffers * GPUCommandBufferDescriptor https://gpuweb.github.io/gpuweb/#dictdef-gpucommandbufferdescriptor * GPUDevice https://gpuweb.github.io/gpuweb/#gpu-device * GPUQueue https://gpuweb.github.io/gpuweb/#gpuqueue * GPUTexture https://gpuweb.github.io/gpuweb/#gputexture See also: * 22 Sep 2022 discussion https://www.w3.org/2022/09/22-webmachinelearning-minutes.html#t06 * related issue: webmachinelearning/webnn#264<https://github.com/webmachinelearning/webnn/issues/264> <https://github.com/webmachinelearning/meetings/blob/main/telcons/2022-10-20-wg-agenda.md#%E2%84%B9%EF%B8%8F-prs-in-review>ℹ️ PRs in review * Use unsigned long for size related options of conv2d, convTranspose2d and pooling operations * issue: webmachinelearning/webnn#269<https://github.com/webmachinelearning/webnn/issues/269> * PR: webmachinelearning/webnn#294<https://github.com/webmachinelearning/webnn/pull/294> * Change newShape of reshape to a sequence of nullable unsigned long * issue: webmachinelearning/webnn#289<https://github.com/webmachinelearning/webnn/issues/289> * PR: webmachinelearning/webnn#291<https://github.com/webmachinelearning/webnn/pull/291> <https://github.com/webmachinelearning/meetings/blob/main/telcons/2022-10-20-wg-agenda.md#%E2%84%B9%EF%B8%8F-proposed-new-features>ℹ️ Proposed new features * Unsqueeze operator is missing * issue: webmachinelearning/webnn#296<https://github.com/webmachinelearning/webnn/issues/296> * Need for type casting? * issue: webmachinelearning/webnn#284<https://github.com/webmachinelearning/webnn/issues/284> * Softmax should only support input of floating-point types * issue: webmachinelearning/webnn#283<https://github.com/webmachinelearning/webnn/issues/283> Revisit proposed new features discussed earlier: * Should MLBufferView + MLOperandDescriptor be strongly typed * proposed CR issue: webmachinelearning/webnn#275<https://github.com/webmachinelearning/webnn/issues/275> * Support coordinate transformation modes for Resample2d * proposed CR issue: webmachinelearning/webnn#270<https://github.com/webmachinelearning/webnn/issues/270> * l2Pool2d algorithm clarifications * issue: webmachinelearning/webnn#278<https://github.com/webmachinelearning/webnn/issues/278>
Received on Thursday, 13 October 2022 08:59:31 UTC