
Operator Tolerance 
Conformance Considerations
DWAYNE ROBINSON
2022-10-06



Operator Categories
• Grouping them simplifies the problem:

• Data movement: slice, pad, concat, split, reshape, squeeze, unsqueeze, transpose, 
gather, scatter, padding, depthToSpace, spaceToDepth, topK...

• Data generation: diagonalMatrix, trilu, fillValueSequence...
• Exact math: abs, neg, clamp, ceil, floor, min, max, relu, reduceMin/Max, 

maxpoolNd...
• Simple math: add, subtract, multiply, divide, linear, leakyRelu, hardSigmoid...
• Complex math: exp, log, pow, softsign, softmax, softplus, sigmoid, sqrt...
• Trigonometric functions: sin, sinh, cos, cosh, tan, tanh...
• Lossy accumulation: convNd, gemm/matmul, batch/instanceNormalization, 

reduceSum, averagePoolNd, resampleNd...
• Very complex iterative: gru, gruCell, lstm, rnn...



Testing
• Verifying operator behavior conformance vs device precision?
• Curated input data can help control problematic outliers

• Selected ranges (to avoid asymptotes)
• Integers and powers of two rather than purely random inputs
• Same sign (avoid catastrophic cancellation e.g. negative GEMM bias)



Precision issues and gotchas
• Subtraction of nearly equal numbers (catastrophic cancellation)
• Division by very small numbers (magnifies earlier errors)
• Asymptotes of trigonometric and nonlinear functions
• Subnormals, infinities, near infinities, NaNs
• Differing compute precision vs tensor precision

• Higher precision computation than tensor type (a final round off into tensor)
• Lower precision computation than tensor type (e.g. float32 input/output 

with float32x13f10e8s1 or fixed24f12i11s1 compute)

https://en.wikipedia.org/wiki/Catastrophic_cancellation
https://en.wikipedia.org/wiki/Subnormal_number
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/NaN


Ideal (expected) vs Actual Signal Behavior

0

10

20

30

40

50

60

70

80

90

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Proportional Error

Expected Lower bound Upper bound Actual data

0

10

20

30

40

50

60

70

80

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Constant Bounded Error

Expected Lower bound Upper bound Actual

0

10

20

30

40

50

60

70

80

90

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

Floating point error

Expected Lower bound Upper bound Actual



Measurement methods
• Methods of tolerance (“fundamental deviation”)

• Absolute tolerance - expected within [actual - ATOL, actual + ATOL]
• Relative tolerance - expected within [actual - (actual*RTOL), actual + (actual*RTOL)]

• Unit last place – expected.rawbits within [actual.rawbits - ULP, actual.rawbits + ULP]

• Want tight bounds matching the error distribution
• No single method sufficient for all cases, and so choose the appropriate 

ones for the operator (e.g. legitimate points on functions like log at x=1 
and atan at x=0 have denominator issues with RTOL and ULP)

• Note relative tolerances can be expressed within ULP (eliminating one 
error inducing multiplication), making ATOL and ULP sufficient

https://en.wikipedia.org/wiki/Tolerance_interval
https://en.wikipedia.org/wiki/Unit_in_the_last_place


Contributing error factors
• Number of calculations

• Input elements per output element (IEPOE)
• Total lossy math operations

• Device-specific differences for compute precision and floating-point behavior
• Nature of data values

• large/small, homogeneous, varied, integral, pow2…
• Algorithm used

• e.g. summation order of sequential reduction vs iterative pairwise reduction
• Operation fusions

• They complicate error tolerance because of the error magnification effects
• No longer about operator tolerance but rather that of a miniature graph
• In the rare cases where these implementation optimizations are exposed at an API level, 

they should have less or equal error than each operator chained



Contributing error factors – IEPOE (input 
elements per output element)
• Not used directly, but conceptually tells degree of complexity, as 

the potential error often proportional to number of input elements
• Elementwise = 1
• GEMM = a.sizes.width (or equivalently b.sizes.height)
• Conv2D = filter.sizes.width * filter.sizes.height * (input.sizes.channel / 

groupCount)
• Reduction = input sizes multiplied for each reduction active axis
• Pooling = window size



Contributing error factors – lossy math count
• Intuitively, more lossy math ops yields greater potential error. e.g. compare

• simple linear activation = just 2 math ops, vs
• softmax = elementsToReduce * 3 + 3 math ops

expₑ(a - reduceMax(A, axes)) / reduceSum(expₑ(A - reduceMax(A, axes)), axes);

• The lossy op count establishes a sensible upper bound for the worst serial ordering.
• A value-increasing operation (e.g. + or *) with 1 ULP of error repeated 100x yields <= 1*100 ULP.
• Experiments demonstrate such serial operations (e.g. ReduceSum, ReduceProd, DotProduct) 

yield ULP <= n/~3 even when rounding is always forced toward zero or always toward infinity.
• And in practice, error is much less due to nearest even rounding balancing the deviations (but 

don’t let that false comfort fool you into thinking the worst case can’t happen).
• Note any exact operations are ignorable along the way (e.g. min, max, *2, /4)

• Adding respective ULP’s tolerances for operators (and even fusions) sets a sensible 
upper bound - disclaimer: not a rigorous mathematical proof, but it works in practice 
and beats pulling numbers out of thin air, or picking arbitrary implementations for 
reference



Contributing error factors – device specific 
differences
• Compute precision and tensor data type

• float16 vs float32 vs non-standard types (float19of32, bfloat16)
• rounding modes (toward zero, toward infinity, to nearest even)
• subnormal flushing (to flush or not to flush, that is the question)
• different NaN bit patterns (not all not-a-numbers are equal)
• saturation differences (some GPU’s/NPU’s may saturate to maximum 

positive number, whereas others saturate to infinity)
• Algorithms used (e.g. summation order)

• Device driver implementation specifics (e.g. calculation vs table interpolation 
lookups)



Questions?

❔


