Operator Tolerance
Conformance Considerations




Operator Categories

Grouping them simplifies the problem:

Data movement: slice, pad, concat, split, reshape, squeeze, unsqueeze, transpose,
gather, scatter, padding, depthToSpace, spaceToDepth, topK...

Data generation: diagonalMatrix, trilu, fillValueSequence...

Exact math: abs, neg, clamp, ceil, floor, min, max, relu, reduceMin/Max,
maxpoolNd...

Simple math: add, subtract, multiply, divide, linear, leakyRelu, hardSigmoid...
Complex math: exp, log, pow, softsign, softmax, softplus, sigmoid, sqrt...
Trigonometric functions: sin, sinh, cos, cosh, tan, tanh...

Lossy accumulation: convNd, gemm/matmul, batch/instanceNormalization,
reduceSum, averagePoolNd, resampleNd...

Very complex iterative: gru, gruCell, Istm, rnn...




Testing

Verifying operator behavior conformance vs device precision?

Curated input data can help control problematic outliers

Selected ranges (to avoid asymptotes)
Integers and powers of two rather than purely random inputs

Same sign (avoid catastrophic cancellation e.g. negative GEMM bias)




Precision issues and gotchas

Subtraction of nearly equal numbers ( )
Division by very small numbers (magnifies earlier errors)
Asymptotes of trigonometric and nonlinear functions

, , hear infinities,
Differing compute precision vs tensor precision

Higher precision computation than tensor type (a final round off into tensor)

Lower precision computation than tensor type (e.g. float32 input/output
with float32x13f10e8s1 or fixed24f12i11s1 compute)


https://en.wikipedia.org/wiki/Catastrophic_cancellation
https://en.wikipedia.org/wiki/Subnormal_number
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/NaN

ldeal (expected) vs Actual Signal Behavior

Constant Bounded Error Proportional Error Floating point error
80 90 90
20 = 80 80
60 s 70 i 70
60 60
50 ~
50 50
40
40 40
30
30 30
2) 20— 20
10 = 10 10
1 4 7 101316 19 22 2528 313437 4043 46 49 52555861 64 1 4 7 10131619 22 2528313437 40434649 5255586164 1 4 7 101316 19 22 2528 31 3437 4043 46 49 52 5558 61

Expected Lower bound Upperbound e Actual Expected Lower bound Upper bound e Actual data Expected Lower bound Upperbound e Actual



Measurement methods

Methods of (“fundamental deviation”)
Absolute tolerance - expected within [actual - ATOL, actual + ATOL]
Relative tolerance - expected within [actual - (actual*RTOL), actual + (actual*RTOL)]

— expected.rawbits within [actual.rawbits - ULP, actual.rawbits + ULP]
Want tight bounds matching the error distribution
No single method sufficient for all cases, and so choose the appropriate

ones for the operator (e.g. legitimate points on functions like log at x=1
and atan at x=0 have denominator issues with RTOL and ULP)

Note relative tolerances can be expressed within ULP (eliminating one
error inducing multiplication), making ATOL and ULP sufficient


https://en.wikipedia.org/wiki/Tolerance_interval
https://en.wikipedia.org/wiki/Unit_in_the_last_place

Contributing error factors

Number of calculations
Input elements per output element (IEPOE)
Total lossy math operations
Device-specific differences for compute precision and floating-point behavior

Nature of data values
large/small, homogeneous, varied, integral, pow?2...

Algorithm used
e.g. summation order of sequential reduction vs iterative pairwise reduction

Operation fusions
They complicate error tolerance because of the error magnification effects
No longer about operator tolerance but rather that of a miniature graph

In the rare cases where these implementation optimizations are exposed at an API level,
they should have less or equal error than each operator chained



Contributing error factors — IEPOE (input
elements per output element)

Not used directly, but conceptually tells degree of complexity, as
the potential error often proportional to number of input elements
Elementwise =1
GEMM = a.sizes.width (or equivalently b.sizes.height)

Conv2D = filter.sizes.width * filter.sizes.height * (input.sizes.channel /
groupCount)

Reduction = input sizes multiplied for each reduction active axis
Pooling = window size




Contributing error factors — lossy math count

Intuitively, more lossy math ops yields greater potential error. e.g. compare
simple linear activation = just 2 math ops, vs
softmax = elementsToReduce * 3 + 3 math ops

expe(a - reduceMax(A, axes)) / reduceSum(expe(A - reduceMax(A, axes)), axes);

The lossy op count establishes a sensible upper bound for the worst serial ordering.
A value-increasing operation (e.g. + or *) with 1 ULP of error repeated 100x yields <= 1*100 ULP.

Experiments demonstrate such serial operations (e.g. ReduceSum, ReduceProd, DotProduct)
yield ULP <= n/~3 even when rounding is always forced toward zero or always toward infinity.

And in practice, error is much less due to nearest even rounding balancing the deviations (but
don’t let that false comfort fool you into thinking the worst case can’t happen).

Note any exact operations are ignorable along the way (e.g. min, max, *2, /4)

Adding respective ULP’s tolerances for operators (and even fusions) sets a sensible

upper bound - disclaimer: not a rigorous mathematical Aamaf, but it works in practice
an?’ beats pulling numbers out of thin air, or picking arbitrary implementations for
reference



Contributing error factors — device specific
differences

Compute precision and tensor data type
float16 vs float32 vs non-standard types (float190f32, bfloat16)
rounding modes (toward zero, toward infinity, to nearest even)
subnormal flushing (to flush or not to flush, that is the question)
different NaN bit patterns (not all not-a-numbers are equal)
saturation differences (some GPU’s/NPU’s may saturate to maximum
positive number, whereas others saturate to infinity)

Algorithms used (e.g. summation order)

Device driver implementation specifics (e.g. calculation vs table interpolation
lookups)



Questions?

?




