Operator Tolerance Conformance Considerations

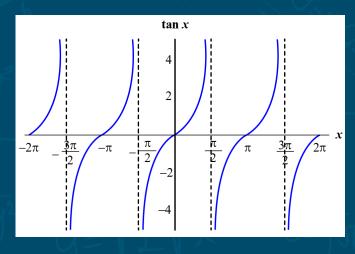
DWAYNE ROBINSON 2022-10-06

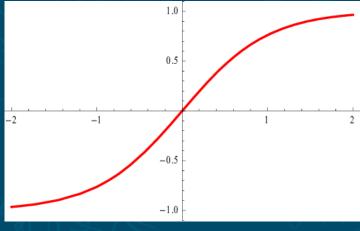
Operator Categories

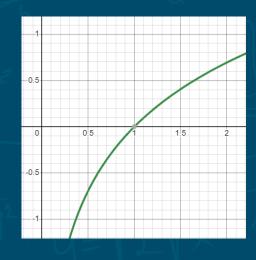
- Grouping them simplifies the problem:
 - <u>Data movement</u>: slice, pad, concat, split, reshape, squeeze, unsqueeze, transpose, gather, scatter, padding, depthToSpace, spaceToDepth, topK...
 - Data generation: diagonalMatrix, trilu, fillValueSequence...
 - Exact math: abs, neg, clamp, ceil, floor, min, max, relu, reduceMin/Max, maxpoolNd...
 - Simple math: add, subtract, multiply, divide, linear, leakyRelu, hardSigmoid...
 - Complex math: exp, log, pow, softsign, softmax, softplus, sigmoid, sqrt...
 - Trigonometric functions: sin, sinh, cos, cosh, tan, tanh...
 - <u>Lossy accumulation</u>: convNd, gemm/matmul, batch/instanceNormalization, reduceSum, averagePoolNd, resampleNd...
 - Very complex iterative: gru, gruCell, lstm, rnn...

Testing

- Verifying operator behavior conformance vs device precision?
- Curated input data can help control problematic outliers
 - Selected ranges (to avoid asymptotes)
 - Integers and powers of two rather than purely random inputs
 - Same sign (avoid catastrophic cancellation e.g. negative GEMM bias)



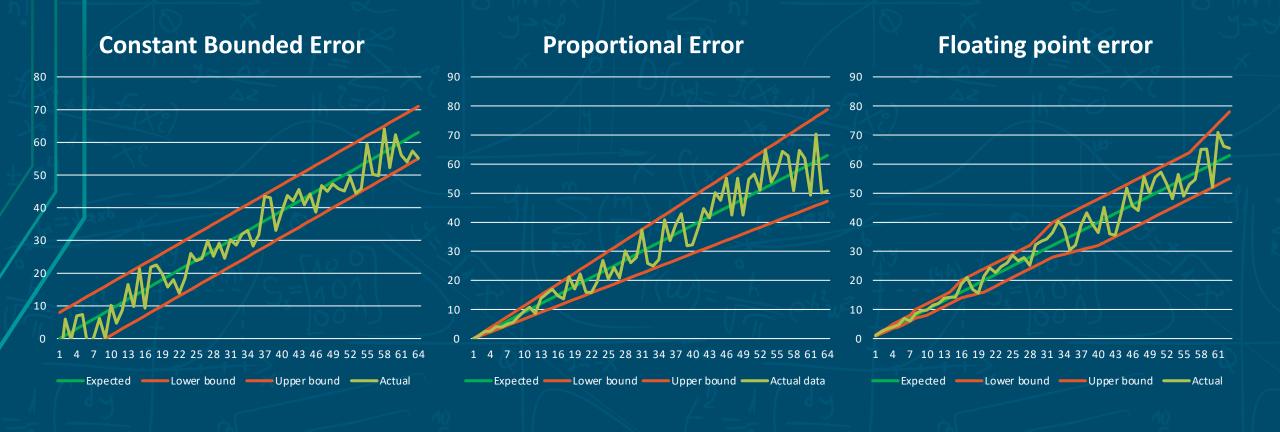




Precision issues and gotchas

- Subtraction of nearly equal numbers (<u>catastrophic cancellation</u>)
- Division by very small numbers (magnifies earlier errors)
- Asymptotes of trigonometric and nonlinear functions
- Subnormals, infinities, near infinities, NaNs
- Differing compute precision vs tensor precision
 - Higher precision computation than tensor type (a final round off into tensor)
 - Lower precision computation than tensor type (e.g. float32 input/output with float32x13f10e8s1 or fixed24f12i11s1 compute)

Ideal (expected) vs Actual Signal Behavior



Measurement methods

- Methods of <u>tolerance</u> ("fundamental deviation")
 - Absolute tolerance expected within [actual ATOL, actual + ATOL]
 - Relative tolerance expected within [actual (actual*RTOL), actual + (actual*RTOL)]
 - Unit last place expected.rawbits within [actual.rawbits ULP, actual.rawbits + ULP]
- Want tight bounds matching the error distribution
- No single method sufficient for all cases, and so choose the appropriate ones for the operator (e.g. legitimate points on functions like log at x=1 and atan at x=0 have denominator issues with RTOL and ULP)
- Note relative tolerances can be expressed within ULP (eliminating one error inducing multiplication), making ATOL and ULP sufficient

Contributing error factors

- Number of calculations
 - Input elements per output element (IEPOE)
 - Total lossy math operations
- Device-specific differences for compute precision and floating-point behavior
- Nature of data values
 - large/small, homogeneous, varied, integral, pow2...
- Algorithm used
 - e.g. summation order of sequential reduction vs iterative pairwise reduction
- Operation fusions
 - They complicate error tolerance because of the error magnification effects
 - No longer about operator tolerance but rather that of a miniature graph
 - In the rare cases where these implementation optimizations are exposed at an API level, they should have less or equal error than each operator chained

Contributing error factors – IEPOE (input elements per output element)

- Not used directly, but conceptually tells degree of complexity, as the potential error often proportional to number of input elements
 - Elementwise = 1
 - GEMM = a.sizes.width (or equivalently b.sizes.height)
 - Conv2D = filter.sizes.width * filter.sizes.height * (input.sizes.channel / groupCount)
 - Reduction = input sizes multiplied for each reduction active axis
 - Pooling = window size

Contributing error factors – lossy math count

- Intuitively, more lossy math ops yields greater potential error. e.g. compare
 - simple linear activation = just 2 math ops, vs
 - softmax = elementsToReduce * 3 + 3 math ops exp_e(a - reduceMax(A, axes)) / reduceSum(exp_e(A - reduceMax(A, axes)), axes);
- The lossy op count establishes a sensible upper bound for the worst serial ordering.
 - A value-increasing operation (e.g. + or *) with 1 ULP of error repeated 100x yields <= 1*100 ULP.
 - Experiments demonstrate such serial operations (e.g. ReduceSum, ReduceProd, DotProduct) yield ULP $\leq n/^3$ even when rounding is always forced toward zero or always toward infinity.
 - And in practice, error is *much less* due to nearest even rounding balancing the deviations (but don't let that false comfort fool you into thinking the worst case can't happen).
 - Note any exact operations are ignorable along the way (e.g. min, max, *2, /4)
- Adding respective ULP's tolerances for operators (and even fusions) sets a sensible upper bound disclaimer: not a rigorous mathematical proof, but it works in practice and beats pulling numbers out of thin air, or picking arbitrary implementations for reference

Contributing error factors — device specific differences

- Compute precision and tensor data type
 - float16 vs float32 vs non-standard types (float19of32, bfloat16)
 - rounding modes (toward zero, toward infinity, to nearest even)
 - subnormal flushing (to flush or not to flush, that is the question)
 - different NaN bit patterns (not all not-a-numbers are equal)
 - saturation differences (some GPU's/NPU's may saturate to maximum positive number, whereas others saturate to infinity)
- Algorithms used (e.g. summation order)
 - Device driver implementation specifics (e.g. calculation vs table interpolation lookups)

