RE: [ACTION-94]: go and find examples of concept ontology (semantic features of terms as opposed to domain type ontologies)

Dear Felix,

 

Thank you very much. Probably Tadej can prepare the use cases you mention,
with the consolidated data category. About the question 3 and 4, I can tell
you the following:

 

3) Would it be produced also by an automatic text annotation tool?

 

For the pointers to the three information referred (concepts in Ontology,
meanings in Lexical DB, and terms in Terminological resources) I think it
would be possible semiautomatic annotation tools, that is, proposed by the
tool and confirmed by user.

 

The fully automatic text annotation  would need more sophisticate “semantic
calculus”, and most of these are under research, as far as I know. Maybe, in
this cases, it should be combined with textAnalysisAnnotation, specifying in
Annotation agent – and Confidence score – which system and with which
reliability has been produced.

 

4) Would 1-2 be consumed by an MT tool, or by other tools?

 

These can be basically consumed by language processing tools, like MT, and
other Linguistic Technology that needs content or semantic info. For
instance Text Analytics, Semantic search, etc.. In the localization chains,
these information can be also used by automatic or semiautomatic processes
(like selection of dictionaries for translations, or selection of
translators/revisers by subject area) 

 

It could be also used by humans for translation or post-edition in case of
ambiguity or lake of context in the content, but mostly by automatic
systems.

 

I hope this helps.

Pedro

 

  _____  

De: Felix Sasaki [mailto:fsasaki@w3.org] 
Enviado el: sábado, 02 de junio de 2012 14:13
Para: Tadej Stajner; pedro.diez
CC: public-multilingualweb-lt@w3.org
Asunto: Re: [ACTION-94]: go and find examples of concept ontology (semantic
features of terms as opposed to domain type ontologies)

 

Hi Tadej, Pedro, all,

 

this looks like a great chain of producing and consuming metadata.

 

Apologies if this was explained during last weeks call or before, but can
you clarify a bit the following:

 

1) How would the actual HTML markup produced in the original text annotation
use case look like?

2) How would the markup in this use case look like?

3) Would it be produced also by an automatic text annotation tool?

4) Would 1-2 be consumed by an MT tool, or by other tools?

 

Thanks again,

 

Felix 

2012/5/31 Tadej Stajner <tadej.stajner@ijs.si>

Hi Pedro, 
thanks for the excellent explanation. If I understand you correctly, a
sufficient example for this use case would be annotation of individual words
with synset URI of the appropriate wordnet? If so, then I believe this route
can be practical - I think linking to the synset is a more practical idea
than expressing semantic features of the word given the available tools. 

Enrycher can do automatic all-word disambiguation into the english wordnet,
whereas  we don't have anything specific in place for semantic features
(which I suspect also holds for other text analytics providers).

I'm also in favor of prescribing wordnets for individual languages as valid
selector domains as you suggest in option 1). That would make validation
easier since we have a known domain. 

@All: Can we come up with a second implementation for this use case,
preferrably a consumer? 

-- Tadej




On 5/29/2012 2:00 PM, Pedro L. Díez Orzas wrote: 

Dear all,

 

Sorry for the delay. I tried to contact some people I think can contribute
to this, but they are not available these weeks. 

 

Before providing an example to consider all if it is worthwhile to maintain
“semantic selector” attribute in the consolidation of “Disambiguation” I
would like to do a couple considerations:

 

1.	Probably we will not have short term any implementation, but there
are for example few semantic networks available in web (see
http://www.globalwordnet.org/gwa/wordnet_table.html) that could be mapped
using semantic selectors. See on line for example, the famous
http://wordnetweb.princeton.edu <http://wordnetweb.princeton.edu/perl/webwn>
).
2.	The W3C working group SKOS (Simple Knowledge Organization System
Reference) are maybe dealing with similar things.

 

The “semántica selector” allows further lexical (simple words or multi
words) distinctions than a “domain” or an ontology like NERD. Also, the
denotation is different from the “concept reference”, most of all in part of
speech like verbs.  

 

Within the same domain, referring to very similar concepts, languages have
semantic differences. Depending on the semantic theory used, each tries to
captivate these differences by means of different systems (semantic
features, semantic primitives, semantic nodes (in semantic networks), other
semantic representations). An example could be the German verb “löschen”,
which in different contexts can take different meanings that can be try to
capture using different selectors, with the different systems.

 

–         löschen                        -> clear             (some bits)

                                   -> delete           (files)
                                   -> cancel          (programs)
                                   -> erase            (a scratchpad)
                                   -> extinguish     (a fire)

 


Other possible translations of the verb “löschen” are:


delete

löschen, streichen, tilgen, ausstreichen, herausstreichen


clear

löschen, klären, klarmachen, leeren, räumen, säubern


erase

löschen, auslöschen, tilgen, ausradieren, radieren, abwischen


extinguish

löschen, auslöschen, zerstören


quench

löschen, stillen, abschrecken, dämpfen


put out

löschen, bringen, ausmachen, ausschalten, treiben, verstimmen


unload

entladen, abladen, ausladen, löschen, abstoßen, abwälzen


discharge

entladen, erfüllen, entlassen, entlasten, löschen, ausstoßen


wipe out

auslöschen, löschen, ausrotten, tilgen, zunichte machen, auswischen


slake

stillen, löschen


close

schließen, verschließen, abschließen, sperren, zumachen, löschen


blot

löschen, abtupfen, klecksen, beklecksen, sich unmöglich machen, sich
verderben


turn off

ausschalten, abbiegen, abstellen, abdrehen, einbiegen, löschen


blow out

auspusten, löschen, aufblasen, aufblähen, aufbauschen, platzen


zap

abknallen, düsen, umschalten, löschen, töten, kaputtmachen


redeem

einlösen, erlösen, zurückkaufen, tilgen, retten, löschen


pay off

auszahlen, bezahlen, tilgen, abzahlen, abbezahlen, löschen


switch out

löschen


unship

ausladen, entladen, abnehmen, löschen


souse

eintauchen, durchtränken, löschen, nass machen


rub off

abreiben, abgehen, abwetzen, ausradieren, abscheuern, löschen


strike off

löschen


land

landen, an Land gehen, kriegen, an Land ziehen, aufsetzen, löschen

 

 

 

According to this, the consolidation of disambiguation/namedEntity/  data
categories under “Terminology”
http://www.w3.org/International/multilingualweb/lt/wiki/Requirements#disambi
guation could be the following. It is thought to cover operational URI or
XPath pointers to the current three most important semantic resources:
conceptual (ontology), semantic (semantic networks or lexical databases) and
terminological (glossaries and terminological resources), where ontologies
are used for both general lexicon and terminology, semantic networks to
represent general vocabulary (lexicon), and terminological resources
specialized vocabulary.

 

disambiguation

Includes data to be used by MT systems in disambiguating difficult content

 

Data model

*	concept reference: points to a concept in an ontology that this
fragment of text represents. May be an URI or an XPath pointer.
*	semantic selector: points to a meaning in an semantic network that
this fragment of text represents. May be an URI or an XPath pointer.
*	terminology reference: points to a term in a terminological resource
that this fragment of text represents. May be an URI or an XPath pointer.
*	equivalent translation: expressions of that concept in other
languages, for example for training MT systems

 

 

Also, I would keep textAnalysisAnnotation, since the purpose is quite
different.

 

Anyway, if we consider not to include “semantic selector” now, maybe it can
be for future versions or to be treated in liaison with other groups.

 

I hope it helps,

Pedro

 

__________________________________

 

Pedro L. Díez Orzas

Presidente Ejecutivo/CEO

Linguaserve Internacionalización de Servicios, S.A.

Tel.: +34 <tel:%2B34%2091%20761%2064%2060>  91 761 64 60
Fax: +34 91 542 89 28 <tel:%2B34%2091%20542%2089%2028>  

E-mail:  <mailto:pedro.diez@linguaserve.com> pedro.diez@linguaserve.com

www.linguaserve.com <http://www.linguaserve.com/> 

 

«En cumplimiento con lo previsto con los artículos 21 y 22 de la Ley
34/2002, de 11 de julio, de Servicios de la Sociedad de Información y
Comercio Electrónico, le informamos que procederemos al archivo y
tratamiento de sus datos exclusivamente con fines de promoción de los
productos y servicios ofrecidos por LINGUASERVE INTERNACIONALIZACIÓN DE
SERVICIOS, S.A. En caso de que Vdes. no deseen que procedamos al archivo y
tratamiento de los datos proporcionados, o no deseen recibir comunicaciones
comerciales sobre los productos y servicios ofrecidos, comuníquenoslo a
clients@linguaserve.com, y su petición será inmediatamente cumplida.»

 

"According to the provisions set forth in articles 21 and 22 of Law 34/2002
of July 11 regarding Information Society and eCommerce Services, we will
store and use your personal data with the sole purpose of marketing the
products and services offered by LINGUASERVE INTERNACIONALIZACIÓN DE
SERVICIOS, S.A. If you do not wish your personal data to be stored and
handled, or you do not wish to receive further information regarding
products and services offered by our company, please e-mail us to
clients@linguaserve.com. Your request will be processed immediately."

 ____________________________________

 

 

 





 

-- 
Felix Sasaki

DFKI / W3C Fellow

 

Received on Monday, 4 June 2012 11:54:32 UTC