On May 10, 2012, at 7:41 AM, Christoph Päper wrote: > That’s why it’s possible most of the time to apply them algorithmically, without explicit markup (i.e. ‘sup’ and ‘sub’), but implicit markup (e.g. ‘abbr’, ‘math’ and ‘lang’) can help a lot. > > Mme. ⇐ M<sup>me</sup> > Acme(TM) ⇐ Acme<sup>TM</sup> (Acme™) > 1st, 2nd, 3rd, 4th ⇐ 1<sup>st</sup>, 2<sup>nd</sup>, 3<sup>rd</sup>, 4<sup>th</sup> > H2O ⇐ H<sub>2</sub>O > NOx ⇐ NO<sub>x</sub> > YCbCr ⇐ YC<sub>B</sub>C<sub>R</sub> > 2 Cl- + Ca2+ ⇐ 2 Cl<sup>−</sup> + Ca<sup>2+</sup> > E = mc^2 ⇐ E = mc<sup>2</sup> (E = mc²) > 9.80665 kg·m·s^-2 ⇐ 9.80665 kg·m·s<sup>-2</sup> (kg·m·s⁻²) > 1 lbf. ⇐ 1 lb<sub><i>F</i></sub> > 10bin + 10_10 + Ah ⇐ 10<sub>bin</sub> + 10<sub>10</sub> + A<sub>h</sub> > log_e(a), log10(a) ⇐ log<sub>e</sub>a = ln a, log<sub>10</sub>a = lg a > a<sup>-</>b<sup>*</>c<sup>+</>d<sup>?</>e<sup>!</> = a{0}b{0,}c{1,}d{,1}e{1} > n/a ⇐ NP<sub>Nom, Sg, f</sub> > n/a or lim_(n→0) ⇐ lim<sub>n→0</sub> > n/a or ∏_(i∈ℙ) ⇐ ∏<sub>i∈ℙ</sub> > n/a ⇐ ∑<sub>i=1</sub><sup>∞</sup> = ∑<sup>∞</sup><sub>i=1</sub> > n/a or C14, C-14 ⇐ <sup>14</sup>C ? > n/a ⇐ <sup>235</sup><sub>92</sub>U > > It’s usually the font developer’s job to create complex substitution tables for that (although maybe for ‘calt’ or the like rather than ‘subs’ and ‘sups’) Are you saying that font developers should build things like this user input: E = mc^2 output: E = mc² into fonts via OpenType features? TalReceived on Thursday, 10 May 2012 13:29:33 UTC
This archive was generated by hypermail 2.4.0 : Friday, 25 March 2022 10:08:16 UTC