- From: Stan Devitt <jsdevitt@stratumtek.com>
- Date: Tue, 20 May 2003 17:22:38 -0400
- To: Robert Miner <RobertM@dessci.com>
- CC: brentmh@ece.rice.edu, www-math@w3.org, lizzardg@rice.edu
I don't know if this was what you had in mind, but given u=(x,y,z) with x,y and z all functions of s, I would write df(x,y,z)/du *du/ds as something like <apply> <plus/> <apply> <times/> <apply><partialdiff/><bvar><ci>x</ci></bvar> <apply><ci>f</ci><ci>x</ci><ci>y</ci><ci>z</ci></apply> </apply> <apply><partialdiff/><bvar><ci>s</ci></bvar> <apply><ci>x</ci><ci>s</ci></apply> </apply> </apply> <apply> <times/> <apply><partialdiff/><bvar><ci>y</ci></bvar> <apply><ci>f</ci><ci>x</ci><ci>y</ci><ci>z</ci></apply> </apply> <apply><partialdiff/><bvar><ci>s</ci></bvar> <apply><ci>y</ci><ci>s</ci></apply> </apply> </apply> <apply> <times/> <apply><partialdiff/><bvar><ci>z</ci></bvar> <apply><ci>f</ci><ci>x</ci><ci>y</ci><ci>z</ci></apply> </apply> <apply><partialdiff/><bvar><ci>s</ci></bvar> <apply><ci>z</ci><ci>s</ci></apply> </apply> </apply> </apply> I would write the gradient of f evaluated at (a,b,c) as <apply> <apply><grad/><ci>f</ci></apply> <vector><ci>a</ci><ci>b</ci><ci>c</ci></vector> </apply> and if u is a unit vector I would write the directional derivative of f in the direction uu=(u,v,w) (a unit vector) at (a,b,c) as: <apply> <apply> <times definitionURL="dotproduct"/> <apply><grad/><ci>f</ci></apply> <vector><ci>a</ci><ci>b</ci><ci>c</ci></vector> </apply> <vector><ci>u</ci><ci>v</ci><ci>w</ci></vector> </apply> > >
Received on Tuesday, 20 May 2003 17:20:32 UTC