- From: Alex Milowski <alex@milowski.org>
- Date: Tue, 13 Mar 2007 15:10:10 -0700
- To: public-xml-processing-model-wg <public-xml-processing-model-wg@w3.org>
- Message-ID: <28d56ece0703131510r49908bf1p1ea300e1d7ca7188@mail.gmail.com>
If we have something like the following pipeline: <p:pipeline name="toric-gröbner" xmlns:p='http://www.w3.org/2007/03/xproc' xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:monos=" http://www.milowski.com/Vocabulary/Math/Monos/Steps/2005/1/0" xmlns:m="http://www.milowski.com/Vocabulary/Math/Monos/2005/1/0 "> <p:input port="pipe-input"/> <p:output port="pipe-output"> <p:pipe step="translate-input" port="result"/> </p:output> <p:xslt name="translate-input"> <p:input port="transform"> <p:inline> <xsl:transform version="1.0"> <xsl:template match="/m:matrix"> <m:compute-toric-ideal monomial-order="wgrevlex" output="matrix-compact"> <xsl:copy-of select="*"/> <xsl:if test="not(m:row-space-vector)"> <m:compute-row-space-vector> <xsl:copy-of select="m:matrix"/> </m:compute-row-space-vector> </xsl:if> </m:compute-toric-ideal> </xsl:template> <xsl:template match="*"> <xsl:copy-of select="."/> </xsl:template> </xsl:transform> </p:inline> </p:input> <p:input port="document"><p:pipe step="toric-gröbner" port="pipe-input"/></p:input> </p:xslt> </p:pipeline> The inline XSLT transformation won't compile unless the in-scope namespaces are copied to the document element supplied as part of the input to the 'transform' port of the XSLT step. In the above pipeline, I declare all the prefixes on the document element of the pipeline. This is what users typically do. If they do that and we *DO NOT* copy the in-scope namespaces to the generated document element for inline documents, the user will get an error and be very confused. On the other hand, if we don't, a pipeline with a single identity step using an inline would generate output with more namespace declarations than specified on the inline. This seems like the lesser evil. -- --Alex Milowski "The excellence of grammar as a guide is proportional to the paucity of the inflexions, i.e. to the degree of analysis effected by the language considered." Bertrand Russell in a footnote of Principles of Mathematics
Received on Tuesday, 13 March 2007 22:10:19 UTC