W3C home > Mailing lists > Public > www-amaya@w3.org > April to June 2001

Re: Bug: undeletable section in a document

From: Irene Vatton <Irene.Vatton@inrialpes.fr>
Date: Thu, 14 Jun 2001 16:53:01 +0200
To: Joe Gittings <joe.gittings@ucl.ac.uk>
Cc: www-amaya <www-amaya@w3.org>, Irene.Vatton@inrialpes.fr
Message-Id: <20010614145301.333E2C@maiana.inrialpes.fr>

It's just due to an inconsistent selection in the tree structure.
You have to hit the key Escape (F2 on windows) to request Amaya to
generate the corresponding consistent selection then you will be able 
to remove it.

> Hi,
> 
> I'd like to report this bug, which I've been observing occasionally.
> Sometimes, it is not possible to delete a selected region containing
> MathML. I attach an example. The problem appears to depend on the
> relationship between the undeletable region and the rest of the
> document.
> 
> I say this because in the case of this example, if one copies and pastes
> the undeletable region into a new blank document, it is possible to
> delete it in the new document. So its undeletability appears to be
> connected with other parts of the document. Furthermore, other regions
> of this example document are deletable. Also, slightly changing the
> extent of the selected region makes it deletable. Thus I attach the
> entire document, rather than just the undeletable region.
> 
> OK here is the example. Open the attachment in Amaya and select the
> region between:
> "Bell states:"
> and
> "If <lambda> is unknown, the probability distribution"
> *inclusive*.
> 
> You should find that hitting backspace or delete or selecting the Delete
> menu item has no effect.  If I enlarge the extent of the selection, say
> to include sections 4.1.1, 4.1.2, and 4.1.5, I can delete it fine.
> 
> This problem has been a nuisance for me before, as it has resulted in me
> having to delete more than I want to in order to delete something!
> 
> Thanks,
> Joe
> 
> 
> 
> <?xml version="1.0" encoding="iso-8859-1"?>
> <html xmlns="http://www.w3.org/1999/xhtml">
> <head>
>   <title>Preskill Chap 4 notes</title>
>   <meta name="GENERATOR" content="amaya V4.3.2" />
>   <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
> </head>
> 
> <body>
> <h1>Notes on Preskill chapter 4</h1>
> 
> <p>Joe Gittings</p>
> 
> <p>June 2001</p>
> 
> <p></p>
> 
> <h2>4.1.1 Hidden quantum information</h2>
> 
> <p>Bell states:</p>
> 
> <p>| 
> <math xmlns="http://www.w3.org/1998/Math/MathML">
>   <msup>
>     <mi>&Phi;</mi>
>     <mo>1</mo>
>   </msup>
> </math>
> &rang; = 
> <math xmlns="http://www.w3.org/1998/Math/MathML">
>   <mfrac>
>     <mn>1</mn>
>     <mrow>
>       <mo>&radic;</mo>
>       <mn>2</mn>
>     </mrow>
>   </mfrac>
> </math>
> (|00&rang;1|11&rang; )</p>
> 
> <p>| 
> <math xmlns="http://www.w3.org/1998/Math/MathML">
>   <msup>
>     <mi>&psi;</mi>
>     <mo>1</mo>
>   </msup>
> </math>
> &rang; = 
> <math xmlns="http://www.w3.org/1998/Math/MathML">
>   <mfrac>
>     <mn>1</mn>
>     <mrow>
>       <mo>&radic;</mo>
>       <mn>2</mn>
>     </mrow>
>   </mfrac>
> </math>
> (|01&rang;1|10&rang;)</p>
> 
> <p></p>
> 
> <h2>4.1.2 Einstein locality and hidden variables</h2>
> 
> <p><span style="text-decoration: underline">Hidden-variable theory result for
> measuring the pure state</span><span
> style="text-decoration: underline">|</span> 
> <math xmlns="http://www.w3.org/1998/Math/MathML"
> style="text-decoration: underline">
>   <msub>
>     <mo>&UpArrow;</mo>
>     <mi>z</mi>
>   </msub>
> </math>
> <span style="text-decoration: underline">&rang;</span><span
> style="text-decoration: underline">along axis rotated by</span><span
> style="text-decoration: underline">&theta;</span><span
> style="text-decoration: underline">from z</span>:</p>
> 
> <p>If we assume | 
> <math xmlns="http://www.w3.org/1998/Math/MathML">
>   <msub>
>     <mo>&UpArrow;</mo>
>     <mi>z</mi>
>   </msub>
> </math>
> &rang; is in fact parameterized by (z,&lambda;) where 0 &le; &lambda; &le; 1
> is the hidden variable, the outcome is:</p>
> 
> <p>| 
> <math xmlns="http://www.w3.org/1998/Math/MathML">
>   <msub>
>     <mo>&UpArrow;</mo>
>     <mi>&theta;</mi>
>   </msub>
> </math>
> &rang; for 0 &le; &lambda; &le; 
> <math xmlns="http://www.w3.org/1998/Math/MathML">
>   <msup>
>     <mi>cos</mi>
>     <mn>2</mn>
>   </msup>
>   <mfrac>
>     <mi>&theta;</mi>
>     <mn>2</mn>
>   </mfrac>
> </math>
> </p>
> 
> <p>| 
> <math xmlns="http://www.w3.org/1998/Math/MathML">
>   <msub>
>     <mo>&DownArrow;</mo>
>     <mi>&theta;</mi>
>   </msub>
> </math>
> &rang; for cos 
> <math xmlns="http://www.w3.org/1998/Math/MathML">
>   <msup>
>     <mn>2</mn>
>   </msup>
>   <mfrac>
>     <mi>&theta;</mi>
>     <mn>2</mn>
>   </mfrac>
>   <mo></mo>
>   <mo></mo>
>   <mo>&lt;</mo>
>   <mi>&lambda;</mi>
>   <mo>&le;</mo>
>   <mo>1</mo>
> </math>
> </p>
> 
> <p>If &lambda; is unknown, the probability distribution for the measurement
> agrees with quantum theory.</p>
> 
> <p></p>
> 
> <h2>4.1.5 More Bell inequalities</h2>
> 
> <p></p>
> 
> <p><span style="text-decoration: underline">Most general statement of Bell
> inequality</span>:</p>
> 
> <p>For two photons whose polarizations are correlated in the state | 
> <math xmlns="http://www.w3.org/1998/Math/MathML">
>   <msup>
>     <mi>&Phi;</mi>
>     <mo>+</mo>
>   </msup>
> </math>
> &rang;:</p>
> 
> <p>|&lang;<strong>ab</strong>&rang; - &lang;<strong>ac</strong>&rang;| &le; 1
> - &lang;<strong>bc</strong>&rang; is violated</p>
> 
> <p>where the observables are</p>
> 
> <p><strong>a</strong> = 
> <math xmlns="http://www.w3.org/1998/Math/MathML">
>   <msup>
>     <mi>&tau;</mi>
>     <mrow>
>       <mo>(</mo>
>       <mi>A</mi>
>       <mo>)</mo>
>     </mrow>
>   </msup>
> </math>
> (&alpha;)</p>
> 
> <p><strong>b</strong> = 
> <math xmlns="http://www.w3.org/1998/Math/MathML">
>   <msup>
>     <mi>&tau;</mi>
>     <mrow>
>       <mo>(</mo>
>       <mi>B</mi>
>       <mo>)</mo>
>     </mrow>
>   </msup>
> </math>
> (&beta;)</p>
> 
> <p><strong>c</strong>= 
> <math xmlns="http://www.w3.org/1998/Math/MathML">
>   <msup>
>     <mi>&tau;</mi>
>     <mrow>
>       <mo>(</mo>
>       <mi>A</mi>
>       <mo>)</mo>
>     </mrow>
>   </msup>
> </math>
> (&gamma;) = 
> <math xmlns="http://www.w3.org/1998/Math/MathML">
>   <msup>
>     <mi>&tau;</mi>
>     <mrow>
>       <mo>(</mo>
>       <mi>B</mi>
>       <mo>)</mo>
>     </mrow>
>   </msup>
> </math>
> (&gamma;)</p>
> 
> <p>and <strong>&tau;</strong>(&theta;) is the polarization operator with
> eigenvalues 11</p>
> 
> <p>i.e. <strong>a</strong> is the polarization of photon A measured along the
> axis &alpha;.</p>
> 
> <p></p>
> 
> <p><span style="text-decoration: underline">CHSH (Clauser-Horne-Shimony-Holt)
> inequality</span>:</p>
> 
> <p>|&lang;<strong>ab</strong>&rang; +&lang;<strong>a' b</strong>&rang; +
> &lang;<strong>a' b'</strong>&rang; - &lang;<strong>ab'</strong>&rang;| &le; 2 
>  </p>
> 
> <p>where <strong>a</strong>, <strong>a'</strong>, <strong>b</strong>,
> <strong>b'</strong> = 11</p>
> 
> <p>is violated by quantum theory</p>
> 
> <p></p>
> 
> <h2>4.1.6 Maximal violation</h2>
> 
> <p></p>
> 
> <p><span style="text-decoration: underline">Cirelson's inequality</span>:</p>
> 
> <p>||<strong>C</strong>|| &le; 2&radic;2</p>
> 
> <p>where</p>
> 
> <p><strong>C</strong> = <strong>ab</strong> + <strong>a' b</strong> +
> <strong>a' b'</strong> - <strong>a b'</strong></p>
> 
> <p></p>
> 
> <p></p>
> 
> <p></p>
> 
> <p></p>
> 
> <p></p>
> </body>
> </html>
> 
Received on Thursday, 14 June 2001 10:53:22 UTC

This archive was generated by hypermail 2.3.1 : Tuesday, 1 April 2014 11:01:36 UTC