W3C home > Mailing lists > Public > www-amaya@w3.org > April to June 2001

Re: Bug: undeletable section in a document

From: Joe Gittings <joe.gittings@ucl.ac.uk>
Date: Thu, 14 Jun 2001 16:10:22 +0100
Message-ID: <3B28D3DD.3625BDFC@ucl.ac.uk>
To: Irene Vatton <Irene.Vatton@inrialpes.fr>
CC: www-amaya <www-amaya@w3.org>
Thanks for the response. A few thoughts:

i) As the developer this is very obvious to you.  But as a user, it was completely
non-obvious! I had absolutely no way of knowing that I should hit Esc. All I could
see was that Amaya wasn't deleting what I asked it to. At the very least, it would
be a good idea for Amaya to display an informative messsage box in this situation.

ii) I don't believe I was trying to do anything unreasonable in this situation. I
wanted to delete a particular block of text, and Amaya wouldn't let me. Hitting
Esc means I end up deleting more than I want to. If Amaya is a WYSIWYG editor,
surely there shouldn't be such a concept as an "inconsistent selection", as this
is forcing users to take account of the underlying HTML/MathML.

iii) If I enlarge the selection, delete it, and then Undo the deletion, I can then
delete the area I originally wanted to delete. This suggests to me that it should
have been possible to delete that area in the first place...

Sorry to be a pain, but I am using Amaya a lot, and am just putting the user's
point of view!

Joe


Irene Vatton wrote:

> It's just due to an inconsistent selection in the tree structure.
> You have to hit the key Escape (F2 on windows) to request Amaya to
> generate the corresponding consistent selection then you will be able
> to remove it.
>
> > Hi,
> >
> > I'd like to report this bug, which I've been observing occasionally.
> > Sometimes, it is not possible to delete a selected region containing
> > MathML. I attach an example. The problem appears to depend on the
> > relationship between the undeletable region and the rest of the
> > document.
> >
> > I say this because in the case of this example, if one copies and pastes
> > the undeletable region into a new blank document, it is possible to
> > delete it in the new document. So its undeletability appears to be
> > connected with other parts of the document. Furthermore, other regions
> > of this example document are deletable. Also, slightly changing the
> > extent of the selected region makes it deletable. Thus I attach the
> > entire document, rather than just the undeletable region.
> >
> > OK here is the example. Open the attachment in Amaya and select the
> > region between:
> > "Bell states:"
> > and
> > "If <lambda> is unknown, the probability distribution"
> > *inclusive*.
> >
> > You should find that hitting backspace or delete or selecting the Delete
> > menu item has no effect.  If I enlarge the extent of the selection, say
> > to include sections 4.1.1, 4.1.2, and 4.1.5, I can delete it fine.
> >
> > This problem has been a nuisance for me before, as it has resulted in me
> > having to delete more than I want to in order to delete something!
> >
> > Thanks,
> > Joe
> >
> >
> >
> > <?xml version="1.0" encoding="iso-8859-1"?>
> > <html xmlns="http://www.w3.org/1999/xhtml">
> > <head>
> >   <title>Preskill Chap 4 notes</title>
> >   <meta name="GENERATOR" content="amaya V4.3.2" />
> >   <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
> > </head>
> >
> > <body>
> > <h1>Notes on Preskill chapter 4</h1>
> >
> > <p>Joe Gittings</p>
> >
> > <p>June 2001</p>
> >
> > <p></p>
> >
> > <h2>4.1.1 Hidden quantum information</h2>
> >
> > <p>Bell states:</p>
> >
> > <p>|
> > <math xmlns="http://www.w3.org/1998/Math/MathML">
> >   <msup>
> >     <mi>&Phi;</mi>
> >     <mo>1</mo>
> >   </msup>
> > </math>
> > &rang; =
> > <math xmlns="http://www.w3.org/1998/Math/MathML">
> >   <mfrac>
> >     <mn>1</mn>
> >     <mrow>
> >       <mo>&radic;</mo>
> >       <mn>2</mn>
> >     </mrow>
> >   </mfrac>
> > </math>
> > (|00&rang;1|11&rang; )</p>
> >
> > <p>|
> > <math xmlns="http://www.w3.org/1998/Math/MathML">
> >   <msup>
> >     <mi>&psi;</mi>
> >     <mo>1</mo>
> >   </msup>
> > </math>
> > &rang; =
> > <math xmlns="http://www.w3.org/1998/Math/MathML">
> >   <mfrac>
> >     <mn>1</mn>
> >     <mrow>
> >       <mo>&radic;</mo>
> >       <mn>2</mn>
> >     </mrow>
> >   </mfrac>
> > </math>
> > (|01&rang;1|10&rang;)</p>
> >
> > <p></p>
> >
> > <h2>4.1.2 Einstein locality and hidden variables</h2>
> >
> > <p><span style="text-decoration: underline">Hidden-variable theory result for
> > measuring the pure state</span><span
> > style="text-decoration: underline">|</span>
> > <math xmlns="http://www.w3.org/1998/Math/MathML"
> > style="text-decoration: underline">
> >   <msub>
> >     <mo>&UpArrow;</mo>
> >     <mi>z</mi>
> >   </msub>
> > </math>
> > <span style="text-decoration: underline">&rang;</span><span
> > style="text-decoration: underline">along axis rotated by</span><span
> > style="text-decoration: underline">&theta;</span><span
> > style="text-decoration: underline">from z</span>:</p>
> >
> > <p>If we assume |
> > <math xmlns="http://www.w3.org/1998/Math/MathML">
> >   <msub>
> >     <mo>&UpArrow;</mo>
> >     <mi>z</mi>
> >   </msub>
> > </math>
> > &rang; is in fact parameterized by (z,&lambda;) where 0 &le; &lambda; &le; 1
> > is the hidden variable, the outcome is:</p>
> >
> > <p>|
> > <math xmlns="http://www.w3.org/1998/Math/MathML">
> >   <msub>
> >     <mo>&UpArrow;</mo>
> >     <mi>&theta;</mi>
> >   </msub>
> > </math>
> > &rang; for 0 &le; &lambda; &le;
> > <math xmlns="http://www.w3.org/1998/Math/MathML">
> >   <msup>
> >     <mi>cos</mi>
> >     <mn>2</mn>
> >   </msup>
> >   <mfrac>
> >     <mi>&theta;</mi>
> >     <mn>2</mn>
> >   </mfrac>
> > </math>
> > </p>
> >
> > <p>|
> > <math xmlns="http://www.w3.org/1998/Math/MathML">
> >   <msub>
> >     <mo>&DownArrow;</mo>
> >     <mi>&theta;</mi>
> >   </msub>
> > </math>
> > &rang; for cos
> > <math xmlns="http://www.w3.org/1998/Math/MathML">
> >   <msup>
> >     <mn>2</mn>
> >   </msup>
> >   <mfrac>
> >     <mi>&theta;</mi>
> >     <mn>2</mn>
> >   </mfrac>
> >   <mo></mo>
> >   <mo></mo>
> >   <mo>&lt;</mo>
> >   <mi>&lambda;</mi>
> >   <mo>&le;</mo>
> >   <mo>1</mo>
> > </math>
> > </p>
> >
> > <p>If &lambda; is unknown, the probability distribution for the measurement
> > agrees with quantum theory.</p>
> >
> > <p></p>
> >
> > <h2>4.1.5 More Bell inequalities</h2>
> >
> > <p></p>
> >
> > <p><span style="text-decoration: underline">Most general statement of Bell
> > inequality</span>:</p>
> >
> > <p>For two photons whose polarizations are correlated in the state |
> > <math xmlns="http://www.w3.org/1998/Math/MathML">
> >   <msup>
> >     <mi>&Phi;</mi>
> >     <mo>+</mo>
> >   </msup>
> > </math>
> > &rang;:</p>
> >
> > <p>|&lang;<strong>ab</strong>&rang; - &lang;<strong>ac</strong>&rang;| &le; 1
> > - &lang;<strong>bc</strong>&rang; is violated</p>
> >
> > <p>where the observables are</p>
> >
> > <p><strong>a</strong> =
> > <math xmlns="http://www.w3.org/1998/Math/MathML">
> >   <msup>
> >     <mi>&tau;</mi>
> >     <mrow>
> >       <mo>(</mo>
> >       <mi>A</mi>
> >       <mo>)</mo>
> >     </mrow>
> >   </msup>
> > </math>
> > (&alpha;)</p>
> >
> > <p><strong>b</strong> =
> > <math xmlns="http://www.w3.org/1998/Math/MathML">
> >   <msup>
> >     <mi>&tau;</mi>
> >     <mrow>
> >       <mo>(</mo>
> >       <mi>B</mi>
> >       <mo>)</mo>
> >     </mrow>
> >   </msup>
> > </math>
> > (&beta;)</p>
> >
> > <p><strong>c</strong>=
> > <math xmlns="http://www.w3.org/1998/Math/MathML">
> >   <msup>
> >     <mi>&tau;</mi>
> >     <mrow>
> >       <mo>(</mo>
> >       <mi>A</mi>
> >       <mo>)</mo>
> >     </mrow>
> >   </msup>
> > </math>
> > (&gamma;) =
> > <math xmlns="http://www.w3.org/1998/Math/MathML">
> >   <msup>
> >     <mi>&tau;</mi>
> >     <mrow>
> >       <mo>(</mo>
> >       <mi>B</mi>
> >       <mo>)</mo>
> >     </mrow>
> >   </msup>
> > </math>
> > (&gamma;)</p>
> >
> > <p>and <strong>&tau;</strong>(&theta;) is the polarization operator with
> > eigenvalues 11</p>
> >
> > <p>i.e. <strong>a</strong> is the polarization of photon A measured along the
> > axis &alpha;.</p>
> >
> > <p></p>
> >
> > <p><span style="text-decoration: underline">CHSH (Clauser-Horne-Shimony-Holt)
> > inequality</span>:</p>
> >
> > <p>|&lang;<strong>ab</strong>&rang; +&lang;<strong>a' b</strong>&rang; +
> > &lang;<strong>a' b'</strong>&rang; - &lang;<strong>ab'</strong>&rang;| &le; 2
> >  </p>
> >
> > <p>where <strong>a</strong>, <strong>a'</strong>, <strong>b</strong>,
> > <strong>b'</strong> = 11</p>
> >
> > <p>is violated by quantum theory</p>
> >
> > <p></p>
> >
> > <h2>4.1.6 Maximal violation</h2>
> >
> > <p></p>
> >
> > <p><span style="text-decoration: underline">Cirelson's inequality</span>:</p>
> >
> > <p>||<strong>C</strong>|| &le; 2&radic;2</p>
> >
> > <p>where</p>
> >
> > <p><strong>C</strong> = <strong>ab</strong> + <strong>a' b</strong> +
> > <strong>a' b'</strong> - <strong>a b'</strong></p>
> >
> > <p></p>
> >
> > <p></p>
> >
> > <p></p>
> >
> > <p></p>
> >
> > <p></p>
> > </body>
> > </html>
> >
Received on Thursday, 14 June 2001 11:10:39 UTC

This archive was generated by hypermail 2.3.1 : Tuesday, 1 April 2014 11:01:36 UTC