- From: Eoin Lane <eoin.lane@capeclear.com>
- Date: Mon, 13 May 2002 20:22:54 +0100
- To: <www-math@w3.org>
I have a bit of confusion here. I have followed the instruction on the http://www.w3.org/Math/XSL/ page. I have a xhtml document with mathml and xhtml which I am trying to view locally first and I have all the relevant *.xsl in the current directory, so there should be no security issues. I have included the document that I am trying to render below. When I include the dtd: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN" "http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd" [ <!ENTITY mathml "http://www.w3.org/1998/Math/MathML"> <!ATTLIST maction id ID #IMPLIED> ]> I get "Parameter entity must be declared before it is used". 2. And when I leave it out, as I know that IE has a problem with this dtd I get "Reference: to undefined entity Sum" Has anyone any idea on how I might be able to get this to render in IE 5.5 or 6.0 Thanks in advance. Eoin. Here is the xhtml dtd <?xml version="1.0"?> <?xml-stylesheet type="text/xsl" href="mathml.xsl"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN" "http://www.w3.org/TR/MathML2/dtd/xhtml-math11-f.dtd" [ <!ENTITY mathml "http://www.w3.org/1998/Math/MathML"> <!ATTLIST maction id ID #IMPLIED> ]> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <!--<link href="http://inconn.dyndns.org/maths/maths.css" rel="stylesheet" type="text/css"/>--> <title>CapScience MathML Tutorial</title> </head> <body> <h2>A bit of Maths</h2> <p>For this tutorial we will be considering three types of number prime numbers, mersenne prime and perfect numbers. </p> <p>A <a href="http://www.utm.edu/research/primes/index.html"><b>Prime</b></a> number is any number that is only divisible by itself and one. So examples of prime number are <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mo stretchy="true">{</mo> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>7</mn> <mo>,</mo> <mn>1</mn> <mn>1</mn> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mrow> <mo stretchy="true">}</mo> </mrow> </math> </p> <p> A <a href="http://www.utm.edu/research/primes/mersenne/index.html"><b>Mersenn e</b></a> prime is a special type of prime number in that it is a prime number that can be written in the form of <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> </mrow> </msup> <mo>-</mo> <mn>1</mn> </mrow> </math>. Example of the first few mersenne number are <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mo stretchy="true">{</mo> <mrow> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>7</mn> <mo>,</mo> <mn>1</mn> <mn>3</mn> <mo>,</mo> <mn>1</mn> <mn>7</mn> <mo>,</mo> <mn>1</mn> <mn>9</mn> <mo>,</mo> <mn>3</mn> <mn>1</mn> <mo>,</mo> <mn>6</mn> <mn>7</mn> <mo>,</mo> <mn>1</mn> <mn>2</mn> <mn>7</mn> <mo>,</mo> <mn>2</mn> <mn>5</mn> <mn>7</mn> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mrow> <mo stretchy="true">}</mo> </mrow> </math> </p> <p> A <a href="http://primes.utm.edu/glossary/page.php/PerfectNumber.html"><b> Perfect</b></a> numbers, on the other hand is, that which is equal to the sum of it parts. Put another way, a whole number is <b>perfect</b> if it is equal to the sum of its proper divisors. So for example the number 6 is perfect because it proper divisors are 1, 2, 3 and 1 + 2 + 3 = 6. So also are 28 (1 + 2 + 4 + 7 +14); 496 and 8128. There numbers constitute the first four perfect numbers and as is evident for the series there are <i>not</i> that many of them. </p> <p>So what is the relationship between these numbers? From its definition it is clear that a mersenne prime is also a prime numbers. A consequence of this is, that k in the <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> </mrow> </msup> <mo>-</mo> <mn>1</mn> </mrow> </math> equation must also be prime. Also, a relationship between prime numbers and perfect numbers had been known since antiquity and formulated by <a href="http://members.fortunecity.com/kokhuitan/euclid.html">Euclid</a> in the following Theorem. </p> <p> <b>Theorem. </b><i>If <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> </mrow> </msup> <mo>-</mo> <mn>1</mn> </mrow> </math> is prime and if <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mi>N</mi> </mrow> <mo>=</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="true">(</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> </mrow> </msup> <mo>-</mo> <mn>1</mn> </mrow> <mo stretchy="true">)</mo> </mrow> </math>, then N is perfect.</i></p> <p> But it wasn't until almost 2000 year later that the exact relationship between these types of numbers was resolved by <a href="http://members.fortunecity.com/kokhuitan/euler.html">Euler</a> in the following theorem.</p> <p><b>Theorem. </b><i>If N is an even perfect number, then <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mi>N</mi> </mrow> <mo>=</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="true">(</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> </mrow> </msup> <mo>-</mo> <mn>1</mn> </mrow> <mo stretchy="true">)</mo> </mrow> </math> , where <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> </mrow> </msup> <mo>-</mo> <mn>1</mn> </mrow> </math> is prime</i> </p><p>In plain language an even perfect number has a mesenne prime associated with it.</p> <h2>A bit of UML</h2> <p>A mersenne prime then is a special type of prime number. In UML this is represented as an <i>'is a'</i> relationship <i>i.e.</i> A mersenne prime <i>is a</i> special type of prime number. Also since k in <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> </mrow> </msup> <mo>-</mo> <mn>1</mn> </mrow> </math> is also prime, then there is also an <i>'has a'</i> relationship <i>i.e.</i> A Mersenne number <i>has a</i> Prime number. </p> <p><img alt="" src="./images/mersennePrime.gif"/></p> <p>From Euler theorem on perfect numbers above it is clear that there are two types Odd Perfect numbers and Even Perfect numbers. Again this can be represented in UML as follows:</p><p><img src="./images/perfectNumber.gif" alt=""/> </p><p>It is interesting to note that an odd perfect number has never been found even though some extraordinary properties about them are known, among which are:</p><ul> <li>An odd perfect number cannot be divided by 105</li> <li>An odd perfect number must contain at least 8 different prime factors</li> <li>The smallest odd perfect number must exceed <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mn>10</mn> <mrow> <mn>300</mn> </mrow> </msup> </mrow> </math> </li> <li>The second largest prime factor of an odd number exceeds 1000</li> <li>The sum of the reciprocials of all odd perfect number id finite. Symbolically <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <munder> <mrow> <mo>∑</mo> </mrow> <mrow> <mi>odd perfect</mi> </mrow> </munder> <mfrac> <mrow> <mn>1</mn> </mrow> <mrow> <mi>n</mi> </mrow> </mfrac> <mo><</mo> </mrow> <mrow> <mi>∞</mi> </mrow> </math> </li> </ul> <p>Look at item three on the list; imagine trying to do some long division sums in your head with that number</p> <p>Finally, again from Eular theorem, perfect numbers are related to prime numbers in that an all even perfect number can be expressed in the form <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mi>N</mi> </mrow> <mo>=</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo stretchy="true">(</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> </mrow> </msup> <mo>-</mo> <mn>1</mn> </mrow> <mo stretchy="true">)</mo> </mrow> </math> <i>i.e.</i> <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mi>N</mi> </mrow> <mo>=</mo> <mrow> <msup> <mn>2</mn> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mrow> </math> (a mersenne number). Therefore every even perfect number <i>has a</i> mersenne number. Once more in UML this can be diagrammatically depicted as follows:</p> <p><img src="./images/perfectPrimeNumber.gif" alt=""/> </p> </body> </html> ---------------------------------- Eoin Lane (PhD) Technical Analyst Tel: ++44 (0) 20 8899 6565 Fax: ++44 (0) 20 8899 6156 Mob: ++44 (0) 7813 928412 <http://www.capeclear.com/> -------------------------------- NEW CapeStudio 3, out now Design, develop, integrate & deploy Web Services http://www.capeclear.com/download
Received on Monday, 13 May 2002 15:25:34 UTC