- From: Kostiainen, Anssi <anssi.kostiainen@intel.com>
- Date: Mon, 5 May 2025 12:50:21 +0000
- To: "public-webmachinelearning-wg@w3.org" <public-webmachinelearning-wg@w3.org>
- Message-ID: <18A2ADDF-9222-4190-AEF3-F4D919EE4CC9@intel.com>
Latest version: https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-05-08-wg-agenda.md WebML WG Teleconference – 8 May 2025 - 15:00-16:00 UTC <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-05-08-wg-agenda.md#webml-wg-teleconference--8-may-2025---1500-1600-utc> See the timezone table ... San Francisco Thu, 8 May 2025 08:00 Boston Thu, 8 May 2025 11:00 London Thu, 8 May 2025 16:00 Berlin Thu, 8 May 2025 17:00 Helsinki Thu, 8 May 2025 18:00 Shanghai Thu, 8 May 2025 23:00 Tokyo Fri, 9 May 2025 00:00 UTC Thu, 8 May 2025 15:00 UTC Other locations: https://www.timeanddate.com/worldclock/fixedtime.html?iso=20250508T15 Logistics <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-05-08-wg-agenda.md#logistics> * Chair: Anssi * Scribe: Anssi * IRC: irc://irc.w3.org:6667/#webmachinelearning * IRC web client: https://irc.w3.org/?channels=#webmachinelearning * Zoom joining instructions: https://lists.w3.org/Archives/Member/internal-webmachinelearning/2023Jun/0000.html * Minutes: https://www.w3.org/2025/05/08-webmachinelearning-minutes.html Agenda <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-05-08-wg-agenda.md#agenda> 🧪 Incubations <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-05-08-wg-agenda.md#-incubations> Discuss recent WebML Community Group development to keep the Working Group abreast of incubation progress. New proposal: ✨ Local Inference Web extension webmachinelearning/proposals#9<https://github.com/webmachinelearning/proposals/issues/9> 🏷️ Operator specific issues <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-05-08-wg-agenda.md#%EF%B8%8F-operator-specific-issues> Review and discuss operator specific issues that reduce code complexity and improve maintainability, e.g.: * layerNormalization * ⨀ webmachinelearning/webnn#748<https://github.com/webmachinelearning/webnn/issues/748> * triangular * ⨀ webmachinelearning/webnn#768<https://github.com/webmachinelearning/webnn/issues/768> * sign * ⨀ webmachinelearning/webnn#845<https://github.com/webmachinelearning/webnn/issues/845> ℹ️ WebNN wide review <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-05-08-wg-agenda.md#%E2%84%B9%EF%B8%8F-webnn-wide-review> Review and discuss interim wide review feedback and the group's proposed response. * ☰ webmachinelearning/webnn#239 (comment)<https://github.com/webmachinelearning/webnn/issues/239#issuecomment-2740740891> ℹ️ Explainer updates: WebNN, MLTensor, MLGraph caching <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-05-08-wg-agenda.md#%E2%84%B9%EF%B8%8F-explainer-updates-webnn-mltensor-mlgraph-caching> Discuss recent explainer updates and suggested improvements. * ☰ WebNN explainer https://github.com/webmachinelearning/webnn/blob/main/explainer.md * ⨀ webmachinelearning/webnn#840<https://github.com/webmachinelearning/webnn/issues/840> * ☰ MLTensor explainer https://github.com/webmachinelearning/webnn/blob/main/mltensor-explainer.md * ⛙ webmachinelearning/webnn#844<https://github.com/webmachinelearning/webnn/pull/844> * ☰ Caching mechanism for MLGraph explainer ℹ️ Query supported devices <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-05-08-wg-agenda.md#%E2%84%B9%EF%B8%8F-query-supported-devices> Discuss the query supported devices feature, now split in two: * ⨀ Before graph compilation webmachinelearning/webnn#815<https://github.com/webmachinelearning/webnn/issues/815> * ⨀ After graph compilation webmachinelearning/webnn#836<https://github.com/webmachinelearning/webnn/issues/836> ℹ️ Core operator set <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-05-08-wg-agenda.md#%E2%84%B9%EF%B8%8F-core-operator-set> Revisit our core operator set effort that aims to identify current primitive gaps by mapping compositional fundamentals to WebNN operators. Discuss any new information on rounding behavior across backends to understand feasibility for inclusion into the core operator set to help with e.g. quantization decomposition. * ⨀ webmachinelearning/webnn#573<https://github.com/webmachinelearning/webnn/issues/573> * ☰ Machine Learning Operator Mapping - All Raw Operators<https://onedrive.live.com/edit?id=EE82F5C6F06C7371!345450&resid=EE82F5C6F06C7371!345450&ithint=file%2Cxlsx&authkey=!AK8f-RDTleqlLXE&wdo=2&cid=ee82f5c6f06c7371>
Received on Monday, 5 May 2025 12:50:33 UTC