- From: Kostiainen, Anssi <anssi.kostiainen@intel.com>
- Date: Thu, 12 Jun 2025 14:41:56 +0000
- To: "public-webmachinelearning-wg@w3.org" <public-webmachinelearning-wg@w3.org>
- Message-ID: <E95F7F7D-B96A-4665-A062-610FD92E18A2@intel.com>
Latest version: https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md
WebML WG Teleconference – 19 June 2025 - 15:00-16:00 UTC
<https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#webml-wg-teleconference--19-june-2025---1500-1600-utc>
See the timezone table ...
Logistics
<https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#logistics>
* Chair: Anssi
* Scribe: Anssi
* IRC: irc://irc.w3.org:6667/#webmachinelearning
* IRC web client: https://irc.w3.org/?channels=#webmachinelearning
* Zoom joining instructions: https://lists.w3.org/Archives/Member/internal-webmachinelearning/2023Jun/0000.html
* Minutes: https://www.w3.org/2025/06/19-webmachinelearning-minutes.html
Agenda
<https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#agenda>
📣 Announcements
<https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#-announcements>
* ⚡ Awesome WebNN tools update
* 💡 WebNN Documentation community preview
* 🗓️ Web Almanac Generative AI 2025 chapter
🧪 Incubations
<https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#-incubations>
Discuss recent WebML Community Group developments to keep the Working Group abreast of incubation progress.
🏷️ Operator specific issues
<https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#%EF%B8%8F-operator-specific-issues>
Review and discuss operator specific issues that reduce code complexity and improve maintainability, e.g.:
* Drop support for int32/uint32 of zeropoint for quantizeLinear
* ⨀ webmachinelearning/webnn#856<https://github.com/webmachinelearning/webnn/issues/856>
* Add missing 64-bit integers support for some reduction operators
* ⨀ webmachinelearning/webnn#694<https://github.com/webmachinelearning/webnn/issues/694>
* ⛙ webmachinelearning/webnn#695<https://github.com/webmachinelearning/webnn/pull/695>
* ⨀ related: minimum data type set webmachinelearning/webnn#853<https://github.com/webmachinelearning/webnn/issues/853>
🏷️ Other issues
<https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#%EF%B8%8F-other-issues>
* ⨀ Evaluate sustainability impact webmachinelearning/webnn#861<https://github.com/webmachinelearning/webnn/issues/861>
ℹ️ Open PRs
<https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#%E2%84%B9%EF%B8%8F-open-prs>
Review open PRs that benefit from high-bandwidth discussion.
* ⛙ https://github.com/webmachinelearning/webnn/pulls
ℹ️ Caching mechanism for MLGraph
<https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#%E2%84%B9%EF%B8%8F-caching-mechanism-for-mlgraph>
Review the explainer and address remaining feedback. Agree on the next steps for the spec and implementation.
* ⨀ webmachinelearning/webnn#807<https://github.com/webmachinelearning/webnn/issues/807>
* ⛙ webmachinelearning/webnn#862<https://github.com/webmachinelearning/webnn/pull/862>
* ☰ Explainer preview https://github.com/webmachinelearning/webnn/blob/cache-explainer/cache-explainer.md
* ⚙️ Prototype implementation shiyi9801/chromium#227<https://github.com/shiyi9801/chromium/pull/227> (usage example<https://github.com/webmachinelearning/webnn-samples/compare/master...shiyi9801:webnn-samples:model_cache>)
ℹ️ Query supported devices
<https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#%E2%84%B9%EF%B8%8F-query-supported-devices>
Before graph compilation
<https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#before-graph-compilation>
Discuss product-driven use case feedback from Google Meet and translate into explainer updates.
Agree on the next steps toward a query mechanism that satisfies key requirements, define explainer and spec changes, if any.
* ⨀ Google Meet feedback: webmachinelearning/webnn#815 (comment)<https://github.com/webmachinelearning/webnn/issues/815#issuecomment-2962608053>
* ☰ Device Preference use cases: device-selection-explainer.md<https://github.com/webmachinelearning/webnn/blob/main/device-selection-explainer.md#device-preference-use-cases>
* ⛙ HW acceleration selection principles PR: webmachinelearning/webnn#860<https://github.com/webmachinelearning/webnn/pull/860>
After graph compilation (MLGraph.devices)
<https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#after-graph-compilation-mlgraphdevices>
Call for use cases. Review any use case input.
* ⨀ webmachinelearning/webnn#836<https://github.com/webmachinelearning/webnn/issues/836>
* ⛙ webmachinelearning/webnn#854<https://github.com/webmachinelearning/webnn/pull/854>
ℹ️ Core operator set, current thinking
<https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#%E2%84%B9%EF%B8%8F-core-operator-set-current-thinking>
Revisit our core operator set effort that aims to identify current primitive gaps by mapping compositional fundamentals to WebNN operators.
Discuss "current thinking" topics and solicit feedback.
* ⨀ "current thinking" webmachinelearning/webnn#573 (comment)<https://github.com/webmachinelearning/webnn/issues/573#issuecomment-2469503466>
* ☰ Machine Learning Operator Mapping - All Raw Operators<https://onedrive.live.com/edit?id=EE82F5C6F06C7371!345450&resid=EE82F5C6F06C7371!345450&ithint=file%2Cxlsx&authkey=!AK8f-RDTleqlLXE&wdo=2&cid=ee82f5c6f06c7371>
Received on Thursday, 12 June 2025 14:42:15 UTC