- From: Kostiainen, Anssi <anssi.kostiainen@intel.com>
- Date: Thu, 12 Jun 2025 14:41:56 +0000
- To: "public-webmachinelearning-wg@w3.org" <public-webmachinelearning-wg@w3.org>
- Message-ID: <E95F7F7D-B96A-4665-A062-610FD92E18A2@intel.com>
Latest version: https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md WebML WG Teleconference – 19 June 2025 - 15:00-16:00 UTC <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#webml-wg-teleconference--19-june-2025---1500-1600-utc> See the timezone table ... Logistics <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#logistics> * Chair: Anssi * Scribe: Anssi * IRC: irc://irc.w3.org:6667/#webmachinelearning * IRC web client: https://irc.w3.org/?channels=#webmachinelearning * Zoom joining instructions: https://lists.w3.org/Archives/Member/internal-webmachinelearning/2023Jun/0000.html * Minutes: https://www.w3.org/2025/06/19-webmachinelearning-minutes.html Agenda <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#agenda> 📣 Announcements <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#-announcements> * ⚡ Awesome WebNN tools update * 💡 WebNN Documentation community preview * 🗓️ Web Almanac Generative AI 2025 chapter 🧪 Incubations <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#-incubations> Discuss recent WebML Community Group developments to keep the Working Group abreast of incubation progress. 🏷️ Operator specific issues <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#%EF%B8%8F-operator-specific-issues> Review and discuss operator specific issues that reduce code complexity and improve maintainability, e.g.: * Drop support for int32/uint32 of zeropoint for quantizeLinear * ⨀ webmachinelearning/webnn#856<https://github.com/webmachinelearning/webnn/issues/856> * Add missing 64-bit integers support for some reduction operators * ⨀ webmachinelearning/webnn#694<https://github.com/webmachinelearning/webnn/issues/694> * ⛙ webmachinelearning/webnn#695<https://github.com/webmachinelearning/webnn/pull/695> * ⨀ related: minimum data type set webmachinelearning/webnn#853<https://github.com/webmachinelearning/webnn/issues/853> 🏷️ Other issues <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#%EF%B8%8F-other-issues> * ⨀ Evaluate sustainability impact webmachinelearning/webnn#861<https://github.com/webmachinelearning/webnn/issues/861> ℹ️ Open PRs <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#%E2%84%B9%EF%B8%8F-open-prs> Review open PRs that benefit from high-bandwidth discussion. * ⛙ https://github.com/webmachinelearning/webnn/pulls ℹ️ Caching mechanism for MLGraph <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#%E2%84%B9%EF%B8%8F-caching-mechanism-for-mlgraph> Review the explainer and address remaining feedback. Agree on the next steps for the spec and implementation. * ⨀ webmachinelearning/webnn#807<https://github.com/webmachinelearning/webnn/issues/807> * ⛙ webmachinelearning/webnn#862<https://github.com/webmachinelearning/webnn/pull/862> * ☰ Explainer preview https://github.com/webmachinelearning/webnn/blob/cache-explainer/cache-explainer.md * ⚙️ Prototype implementation shiyi9801/chromium#227<https://github.com/shiyi9801/chromium/pull/227> (usage example<https://github.com/webmachinelearning/webnn-samples/compare/master...shiyi9801:webnn-samples:model_cache>) ℹ️ Query supported devices <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#%E2%84%B9%EF%B8%8F-query-supported-devices> Before graph compilation <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#before-graph-compilation> Discuss product-driven use case feedback from Google Meet and translate into explainer updates. Agree on the next steps toward a query mechanism that satisfies key requirements, define explainer and spec changes, if any. * ⨀ Google Meet feedback: webmachinelearning/webnn#815 (comment)<https://github.com/webmachinelearning/webnn/issues/815#issuecomment-2962608053> * ☰ Device Preference use cases: device-selection-explainer.md<https://github.com/webmachinelearning/webnn/blob/main/device-selection-explainer.md#device-preference-use-cases> * ⛙ HW acceleration selection principles PR: webmachinelearning/webnn#860<https://github.com/webmachinelearning/webnn/pull/860> After graph compilation (MLGraph.devices) <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#after-graph-compilation-mlgraphdevices> Call for use cases. Review any use case input. * ⨀ webmachinelearning/webnn#836<https://github.com/webmachinelearning/webnn/issues/836> * ⛙ webmachinelearning/webnn#854<https://github.com/webmachinelearning/webnn/pull/854> ℹ️ Core operator set, current thinking <https://github.com/webmachinelearning/meetings/blob/main/telcons/2025-06-19-wg-agenda.md#%E2%84%B9%EF%B8%8F-core-operator-set-current-thinking> Revisit our core operator set effort that aims to identify current primitive gaps by mapping compositional fundamentals to WebNN operators. Discuss "current thinking" topics and solicit feedback. * ⨀ "current thinking" webmachinelearning/webnn#573 (comment)<https://github.com/webmachinelearning/webnn/issues/573#issuecomment-2469503466> * ☰ Machine Learning Operator Mapping - All Raw Operators<https://onedrive.live.com/edit?id=EE82F5C6F06C7371!345450&resid=EE82F5C6F06C7371!345450&ithint=file%2Cxlsx&authkey=!AK8f-RDTleqlLXE&wdo=2&cid=ee82f5c6f06c7371>
Received on Thursday, 12 June 2025 14:42:15 UTC