- From: Kostiainen, Anssi <anssi.kostiainen@intel.com>
- Date: Thu, 7 Nov 2024 14:37:21 +0000
- To: "public-webmachinelearning-wg@w3.org" <public-webmachinelearning-wg@w3.org>
- Message-ID: <0AC905E5-5A42-4894-8F24-E9F969B17A80@intel.com>
Latest version: https://github.com/webmachinelearning/meetings/blob/main/telcons/2024-11-14-wg-agenda.md WebML WG Teleconference – 14 November 2024 - 15:00-16:00 UTC <https://github.com/webmachinelearning/meetings/blob/main/telcons/2024-11-14-wg-agenda.md#webml-wg-teleconference--14-november-2024---1500-1600-utc> See the timezone table ... San Francisco Thu, 14 November 2024 07:00 Boston Thu, 14 November 2024 10:00 London Thu, 14 November 2024 15:00 Berlin Thu, 14 November 2024 16:00 Helsinki Thu, 14 November 2024 17:00 Shanghai Thu, 14 November 2024 23:00 Tokyo Fri, 15 November 2024 00:00 UTC Thu, 14 November 2024 15:00 UTC Other locations: https://www.timeanddate.com/worldclock/fixedtime.html?iso=20241114T15<https://www.timeanddate.com/worldclock/fixedtime.html?iso=20241114T15> Note The meeting starts 1 hour later in locations that do not change their clocks, see Daylight Saving Time<https://www.timeanddate.com/time/dst/events.html>. The timezone table has been adjusted accordingly. Logistics <https://github.com/webmachinelearning/meetings/blob/main/telcons/2024-11-14-wg-agenda.md#logistics> * Chair: Anssi * Scribe: ? (see howto<https://github.com/webmachinelearning/meetings/blob/main/scribe-howto.md>, volunteers welcome!) * IRC: irc://irc.w3.org:6667/#webmachinelearning * IRC web client: https://irc.w3.org/?channels=#webmachinelearning * Joining instructions: https://lists.w3.org/Archives/Member/internal-webmachinelearning/2023Jun/0000.html * Minutes: https://www.w3.org/2024/11/14-webmachinelearning-minutes.html Agenda ℹ️ Call for review: WebML Community Group Charter update <https://github.com/webmachinelearning/meetings/blob/main/telcons/2024-11-14-wg-agenda.md#%E2%84%B9%EF%B8%8F-call-for-review-webml-community-group-charter-update> Important This concerns the Community Group (CG) charter, a group that incubates new web spec proposals. This does not suggest changes to the Working Group (WG) scope. * Call for review: https://lists.w3.org/Archives/Public/public-webmachinelearning/2024Nov/0000.html * Joining the CG: https://webmachinelearning.github.io/community/#join ℹ️ Device selection abstractions <https://github.com/webmachinelearning/meetings/blob/main/telcons/2024-11-14-wg-agenda.md#%E2%84%B9%EF%B8%8F-device-selection-abstractions> Continue discussion<https://www.w3.org/2024/10/31-webmachinelearning-minutes.html#f739> on the generalized device selection proposal (MLOpSupportLimits), considered alternatives (mint more device-agnostic deviceType terms?), security and privacy considerations (enumeration fingerprinting), use cases. * ⨀ webmachinelearning/webnn#749<https://github.com/webmachinelearning/webnn/issues/749> * ☰ Initiate work on an explainer. ℹ️ MLTensor <https://github.com/webmachinelearning/meetings/blob/main/telcons/2024-11-14-wg-agenda.md#%E2%84%B9%EF%B8%8F-mltensor> The group is gathering implementation experience on the MLTensor design to inform an upcoming specification update. The explainer is considered the source of truth in this prototyping phase. * ☰ Discuss open questions<https://github.com/webmachinelearning/webnn/blob/main/mltensor-explainer.md#open-questions> as required to unblock progress. ℹ️ Core op set & MLIR Linalg mapping <https://github.com/webmachinelearning/meetings/blob/main/telcons/2024-11-14-wg-agenda.md#%E2%84%B9%EF%B8%8F-core-op-set--mlir-linalg-mapping> Review mapping from WebNN ops to MLIR Linalg Dialect and discuss key findings. * ⨀ webmachinelearning/webnn#573<https://github.com/webmachinelearning/webnn/issues/573> * ☰ MLIR Linalg Dialect<https://mlir.llvm.org/docs/Dialects/Linalg/> * See also: 📁 TPAC slides<https://lists.w3.org/Archives/Public/www-archive/2024Sep/att-0007/Tensor_Primitive_Ops_Proposal_-_TPAC.pdf> 🏷️ feature request<https://github.com/webmachinelearning/webnn/labels/feature%20request> issues <https://github.com/webmachinelearning/meetings/blob/main/telcons/2024-11-14-wg-agenda.md#%EF%B8%8F-feature-request-issues> * Device Memory Management Primitives * ⨀ webmachinelearning/webnn#780<https://github.com/webmachinelearning/webnn/issues/780> * ☰ Early proposal to reduce GPU/NPU memory, memory copy overhead, enable pipelining; all feedback welcome. * Report non-fatal errors from the WebNN timeline * ⨀ webmachinelearning/webnn#778<https://github.com/webmachinelearning/webnn/issues/778> * ☰ Review proposal, address open questions. * Support reverse operator * ⨀ webmachinelearning/webnn#773<https://github.com/webmachinelearning/webnn/issues/773> * ☰ Reverses the order of the input tensor along specified axes, improves performance of PyTorch models. * Support strides option for slice operator * ⨀ webmachinelearning/webnn#772<https://github.com/webmachinelearning/webnn/issues/772> * ☰ Strides option with performance benefit, include also negative strides? 🏷️ operator specific<https://github.com/webmachinelearning/webnn/labels/operator%20specific> issues * Support block-wise quantization * ⨀ webmachinelearning/webnn#779<https://github.com/webmachinelearning/webnn/issues/779> * ☰ Allows input tensors be divided into smaller independently quantized blocks, used by SLMs. * Remove or redesign triangular * ⨀ webmachinelearning/webnn#768<https://github.com/webmachinelearning/webnn/issues/768> * ☰ All backends emulate triangular, discuss specific mask behaviour. 🏷️ interop<https://github.com/webmachinelearning/webnn/labels/interop> issues <https://github.com/webmachinelearning/meetings/blob/main/telcons/2024-11-14-wg-agenda.md#%EF%B8%8F-interop-issues> * Remove pool2d MLRoundingType * ⨀ webmachinelearning/webnn#324<https://github.com/webmachinelearning/webnn/issues/324> * ⛙ webmachinelearning/webnn#770<https://github.com/webmachinelearning/webnn/pull/770> * ☰ Review PR.
Received on Thursday, 7 November 2024 14:37:33 UTC