- From: Simon Spero <ses@unc.edu>
- Date: Sat, 6 Feb 2010 17:24:51 -0500
- To: Christophe Dupriez <christophe.dupriez@destin.be>
- Cc: SKOS <public-esw-thes@w3.org>, Ed Summers <ehs@pobox.com>, Seth van Hooland <svhoolan@ulb.ac.be>, Bhojaraju Gunjal <bhojaraju.g@gmail.com>, Emmanuel Di Pretoro <edipretoro@gmail.com>, José Ramón Pérez Agüera <jose.aguera@gmail.com>, danbrickley@gmail.com
- Message-ID: <1af06bde1002061424v21823032x997c87f645b0cadd@mail.gmail.com>
----
Useful sources:
Croft, William and D. Alan Cruse (2004). *Cognitive linguistics*. Cambridge
University Press.
Cruse, D. Alan. (1986). *Lexical semantics*. Cambridge University Press.
Riesthuis, Gerhard J. A. et al. (2008). *Guidelines for Multilingual
Thesauri*. IFLA Professional Reports,
No. 115. The Hague, NL: International Federation of Library Associations and
Institutions. URL:
http://www.ifla.org/VII/s29/pubs/Profrep115.pdf
Soergel, Dagobert (1974). Indexing languages and thesauri: construction and
maintenance. Information sciences series. Los Angeles: Melville Pub. Co.
ISBN: 0471810479.
In fact, read as much Soergel as you can find :-)
----------
I'm not sure if the semantics of SKOS are quite right for the mathematical
symbols you're using
Let the type Δ denote the domain of discourse to which labels might be
attached.
Let the type Σ denote the set of all possible label strings .
Let the type CONCEPT denote a two-tuple, (Σ × ℙ(Δ)) containing a label and
a set of elements of Δ .
Let the type CONCEPT-SCHEME denote a 2-tuple (Σ × ℙ(CONCEPT)).
Let c and k denote two arbitrary CONCEPTs
Let C and K denote two arbitrary CONCEPT-SCHEMEs
Let label(k) refer to the first element of CONCEPT k.
Let documents(k) refer to the second element of CONCEPT k.
Let label(C) refer to the first element of a CONCEPT-SCHEME C.
Let concepts(C) refer to the second element of a CONCEPT-SCHEME C.
Let the 2-tuple (c,C) denote a fully qualified concept (FQC) consisting of
of a concept and a concept scheme, where c ∈ concepts(C).
BT, NT, and EQ for a single CONCEPT scheme.
Within a single CONCEPT-SCHEME C, such that c ∈ C ⋀ k ∈ C
1: ( BT) c < k iff documents(c) ⊂ documents(k)
2: (NT) c > k iff documents(c) ⊃ documents(k)
3: (SY) c ≠k iff documents(c) ≡ documents(k)
Unique Concept Scheme Name Assumption
4: ∀ C ∈ CONCEPT-SCHEME. ∀ K ∈ CONCEPT-SCHEME. label(C) ≡ label(D) → C ≡ D
Within Scheme Unique Preferred Name Assumption
5: ∀ C ∈ CONCEPT-SCHEME. ∀ c ∈ concepts(C). ∀ d ∈ concepts(C). label(c) =
label(d) → c ≡ d
Identity
6: C = K iff label(c) ≡ label(k) ⋀ concepts(c) ≡ concepts(k)
7: c = k iff label(c) ≡ label(k) ⋀ documents(c) ≡ documents(k) ^ ∀ C
∈ CONCEPT-SCHEME. c ∈ concepts(C) iff k ∈ concepts(C)
Mapping Relations
Note that mapping relations are only defined between concepts in
different concept schemes.
Exact match, (c,C) ≠(k,K)
8: For an exact match, (c,C) ≠(k,K)
(c,C) ≠(k,K) iff C ≢ K ⋀ documents(c) ≡ documents(k)
Broad Match: (c,C) ⪷ (k,K)
9: (c,C) ⪷ (k,K) iff
¬ (c,C) ≠(k,K) ⋀
c < k â‹€
∄d ∈ concepts(K). (c < d ⋀ d < k ⋀ d ≠k)
Narrower Match: (c,C) ⪸ (k,K)
10: (c,C) ⪸ (k,K) iff
¬ (c,C) ≠(k,K) ⋀
c > k â‹€
∄d ∈ concepts(K). (c > d ⋀ d > k ⋀ d ≠k)
Close Match: (c,C) ≈ (k,K)
The semantics of close match are under determined: as a bare minimum, we
must define a similarity function f ∈ (CONCEPT × CONCEPT → [0,1]), together
with a threshold t below which two concepts are not considered to be a
match.
11: (c,C) ≈ (k,K) iff ¬ (c,C) ≠(k,K) ⋀
f(c,k) ≥ t ⋀
∄d ∈ concepts(K). f(c,d) > f(c,k)
Received on Saturday, 6 February 2010 22:25:24 UTC