- From: Simon Fraser via cvs-syncmail <cvsmail@w3.org>
- Date: Wed, 22 Feb 2012 18:44:09 +0000
- To: public-css-commits@w3.org
Update of /sources/public/csswg/css3-transforms In directory hutz:/tmp/cvs-serv14168 Modified Files: ChangeLog Overview.html Transforms.src.html Log Message: 2012-02-22 simon.fraser@apple.com Fix some validation issues. Index: ChangeLog =================================================================== RCS file: /sources/public/csswg/css3-transforms/ChangeLog,v retrieving revision 1.17 retrieving revision 1.18 diff -u -d -r1.17 -r1.18 --- ChangeLog 22 Feb 2012 18:00:10 -0000 1.17 +++ ChangeLog 22 Feb 2012 18:44:07 -0000 1.18 @@ -1,7 +1,5 @@ 2012-02-22 simon.fraser@apple.com - Add Issues list section with a link to bugzilla. - Remove the DOM Interfaces section. - Add Aryeh Gregor as an editor. + Fix some validation issues. 2012-02-21 simon.fraser@apple.com Add a link to #perspective-function Index: Overview.html =================================================================== RCS file: /sources/public/csswg/css3-transforms/Overview.html,v retrieving revision 1.27 retrieving revision 1.28 diff -u -d -r1.27 -r1.28 --- Overview.html 22 Feb 2012 18:00:10 -0000 1.27 +++ Overview.html 22 Feb 2012 18:44:07 -0000 1.28 @@ -52,9 +52,11 @@ href="http://www.w3.org/TR/css3-transforms">http://www.w3.org/TR/css3-transforms/</a> - <dt>Editor's Draft: + <dt>Editor's draft: - <dd><a href="http://dev.w3.org/csswg/css3-transforms/"></a> + <dd><a + href="http://dev.w3.org/csswg/css3-transforms/">http://dev.w3.org/csswg/css3-transforms/</a> + <dt>Previous version: @@ -687,11 +689,10 @@ participates in that context. <li> An element whose computed value for <a href="#transform-style"><code - class=property>transform-style</code></a> is <class - style=css>‘<code class=css>preserve-3d</code>’, and which - itself participates in a <a class=term href="#d-rendering-context">3D - rendering context</a>, extends that 3D rendering context rather than - establishing a new one. </class> + class=property>transform-style</code></a> is <code + style=css>'preserve-3d'</code>, and which itself participates in a <a + class=term href="#d-rendering-context">3D rendering context</a>, extends + that 3D rendering context rather than establishing a new one. <li> An element participates in a <a class=term href="#d-rendering-context">3D rendering context</a> if its containing @@ -1807,18 +1808,18 @@ <p> Mathematically, all transformation functions can be represented as 4x4 transformation matrices of the following form: - <p><img height=106 src=4x4matrix.png - title="\begin{bmatrix} m11 & m21 & m31 & m41 \\ m12 & m22 & m32 & m42 \\ m13 & m23 & m33 & m43 \\ m14 & m24 & m34 & m44 \end{bmatrix}" - width=222> + <p><img + alt="\begin{bmatrix} m11 & m21 & m31 & m41 \\ m12 & m22 & m32 & m42 \\ m13 & m23 & m33 & m43 \\ m14 & m24 & m34 & m44 \end{bmatrix}" + height=106 src=4x4matrix.png width=222> <ul> <li id=MatrixDefined> <p> A 2D 3x2 matrix with six parameters <em>a</em>, <em>b</em>, <em>c</em>, <em>d</em>, <em>e</em> and <em>f</em> is equivalent to to the matrix:</p> - <img height=106 src=matrix.png - title="\begin{bmatrix} a & c & 0 & e \\ b & d & 0 & f \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" - width=108> + <img + alt="\begin{bmatrix} a & c & 0 & e \\ b & d & 0 & f \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" + height=106 src=matrix.png width=108> <li id=TranslateDefined> <p> A 2D translation with the parameters <em>tx</em> and <em>ty</em> is @@ -1837,9 +1838,9 @@ <li id=SkewDefined> <p> A 2D skew transformation with the parameters <em>alpha</em> and <em>beta</em> is equivalent to the matrix:</p> - <img height=106 src=skew.png - title="\begin{bmatrix} 1 & \tan(\alpha) & 0 & 0 \\ \tan(\beta) & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" - width=205> + <img + alt="\begin{bmatrix} 1 & \tan(\alpha) & 0 & 0 \\ \tan(\beta) & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" + height=106 src=skew.png width=205> <li id=Translate3dDefined> <p> A 3D translation with the parameters <em>tx</em>, <em>ty</em> and @@ -1851,16 +1852,16 @@ <li id=Scale3dDefined> <p> A 3D scaling with the parameters <em>sx</em>, <em>sy</em> and <em>sz</em> is equivalent to the matrix:</p> - <img height=106 src=scale3d.png - title="\begin{bmatrix} sx & 0 & 0 & 0 \\ 0 & sy & 0 & 0 \\ 0 & 0 & sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" - width=137> + <img + alt="\begin{bmatrix} sx & 0 & 0 & 0 \\ 0 & sy & 0 & 0 \\ 0 & 0 & sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" + height=106 src=scale3d.png width=137> <li id=Rotate3dDefined> <p> A 3D rotation with the vector [x,y,z] and the parameter <em>alpha</em> is equivalent to the matrix:</p> - <img height=106 src=rotate3dmatrix.png - title="\begin{bmatrix} 1 - 2 \cdot (y^2 + z^2) \cdot sq & 2 \cdot (x \cdot y \cdot sq - z \cdot sc) & 2 \cdot (x \cdot z \cdot sq + y \cdot sc) & 0 \\ 2 \cdot (x \cdot y \cdot sq + z \cdot sc) & 1 - 2 \cdot (x^2 + z^2) \cdot sq & 2 \cdot (y \cdot z \cdot sq - x \cdot sc) & 0 \\ 2 \cdot (x \cdot z \cdot sq - y \cdot sc) & 2 \cdot (y \cdot z \cdot sq + x \cdot sc) & 1 - 2 \cdot (x^2 + y^2) \cdot sq & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" - width=647> + <img + alt="\begin{bmatrix} 1 - 2 \cdot (y^2 + z^2) \cdot sq & 2 \cdot (x \cdot y \cdot sq - z \cdot sc) & 2 \cdot (x \cdot z \cdot sq + y \cdot sc) & 0 \\ 2 \cdot (x \cdot y \cdot sq + z \cdot sc) & 1 - 2 \cdot (x^2 + z^2) \cdot sq & 2 \cdot (y \cdot z \cdot sq - x \cdot sc) & 0 \\ 2 \cdot (x \cdot z \cdot sq - y \cdot sc) & 2 \cdot (y \cdot z \cdot sq + x \cdot sc) & 1 - 2 \cdot (x^2 + y^2) \cdot sq & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" + height=106 src=rotate3dmatrix.png width=647> <p> where:</p> <img height=50 src=rotate3dvariables.png title="\newline sc = \sin (\alpha/2) \cdot \cos (\alpha/2) \newline sq = \sin^2 (\alpha/2)" @@ -1869,30 +1870,30 @@ <li id=RotateXDefined> <p> A 3D rotation about the X axis with the parameter <em>alpha</em> is equivalent to the matrix:</p> - <img height=106 src=rotateX.png - title="\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" - width=220> + <img + alt="\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" + height=106 src=rotateX.png width=220> <li id=RotateYDefined> <p> A 3D rotation about the Y axis with the parameter <em>alpha</em> is equivalent to the matrix:</p> - <img height=106 src=rotateY.png - title="\begin{bmatrix} \cos(\alpha) & 0 & \sin(\alpha) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\alpha) & 0 & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" - width=220> + <img + alt="\begin{bmatrix} \cos(\alpha) & 0 & \sin(\alpha) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\alpha) & 0 & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" + height=106 src=rotateY.png width=220> <li id=RotateZDefined> <p> A 3D rotation about the Z axis with the parameter <em>alpha</em> is equivalent to the matrix:</p> - <img height=106 src=rotateZ.png - title="\begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" - width=220> + <img + alt="\begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" + height=106 src=rotateZ.png width=220> <li id=PerspectiveDefined> <p> A perspective projection matrix with the parameter <em>d</em> is equivalent to the matrix:</p> - <img height=106 src=perspective.png - title="\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 1 \end{bmatrix}" - width=143> + <img + alt="\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 1 \end{bmatrix}" + height=106 src=perspective.png width=143> </ul> <h2 id=references><span class=secno>17. </span>References</h2> Index: Transforms.src.html =================================================================== RCS file: /sources/public/csswg/css3-transforms/Transforms.src.html,v retrieving revision 1.30 retrieving revision 1.31 diff -u -d -r1.30 -r1.31 --- Transforms.src.html 22 Feb 2012 18:00:10 -0000 1.30 +++ Transforms.src.html 22 Feb 2012 18:44:07 -0000 1.31 @@ -41,6 +41,8 @@ <dt>Latest version: <dd><a href="http://www.w3.org/TR/css3-transforms">[LATEST]</a> + <dt>Editor's draft: + <dd><a href="http://dev.w3.org/csswg/[SHORTNAME]/">http://dev.w3.org/csswg/[SHORTNAME]/</a> <dt>Previous version: <dd>None <dt id="editors-list">Editors: @@ -457,7 +459,7 @@ </li> <li> An element whose computed value for <code class="property">transform-style</code> is - <class style="css">'preserve-3d'</code>, and which itself participates in a + <code style="css">'preserve-3d'</code>, and which itself participates in a <span class="term">3D rendering context</span>, extends that 3D rendering context rather than establishing a new one. </li> @@ -1675,14 +1677,14 @@ <p> Mathematically, all transformation functions can be represented as 4x4 transformation matrices of the following form: </p> - <img src="4x4matrix.png" title="\begin{bmatrix} m11 & m21 & m31 & m41 \\ m12 & m22 & m32 & m42 \\ m13 & m23 & m33 & m43 \\ m14 & m24 & m34 & m44 \end{bmatrix}" width="222" height="106"> + <img src="4x4matrix.png" alt="\begin{bmatrix} m11 & m21 & m31 & m41 \\ m12 & m22 & m32 & m42 \\ m13 & m23 & m33 & m43 \\ m14 & m24 & m34 & m44 \end{bmatrix}" width="222" height="106"> <ul> <li id="MatrixDefined"> <p> A 2D 3x2 matrix with six parameters <em>a</em>, <em>b</em>, <em>c</em>, <em>d</em>, <em>e</em> and <em>f</em> is equivalent to to the matrix: </p> - <img src="matrix.png" title="\begin{bmatrix} a & c & 0 & e \\ b & d & 0 & f \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="108" height="106"> + <img src="matrix.png" alt="\begin{bmatrix} a & c & 0 & e \\ b & d & 0 & f \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="108" height="106"> </li> <li id="TranslateDefined"> <p> @@ -1703,7 +1705,7 @@ <p> A 2D skew transformation with the parameters <em>alpha</em> and <em>beta</em> is equivalent to the matrix: </p> - <img src="skew.png" title="\begin{bmatrix} 1 & \tan(\alpha) & 0 & 0 \\ \tan(\beta) & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="205" height="106"> + <img src="skew.png" alt="\begin{bmatrix} 1 & \tan(\alpha) & 0 & 0 \\ \tan(\beta) & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="205" height="106"> </li> <li id="Translate3dDefined"> <p> @@ -1715,13 +1717,13 @@ <p> A 3D scaling with the parameters <em>sx</em>, <em>sy</em> and <em>sz</em> is equivalent to the matrix: </p> - <img src="scale3d.png" title="\begin{bmatrix} sx & 0 & 0 & 0 \\ 0 & sy & 0 & 0 \\ 0 & 0 & sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="137" height="106"> + <img src="scale3d.png" alt="\begin{bmatrix} sx & 0 & 0 & 0 \\ 0 & sy & 0 & 0 \\ 0 & 0 & sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="137" height="106"> </li> <li id="Rotate3dDefined"> <p> A 3D rotation with the vector [x,y,z] and the parameter <em>alpha</em> is equivalent to the matrix: </p> - <img src="rotate3dmatrix.png" title="\begin{bmatrix} 1 - 2 \cdot (y^2 + z^2) \cdot sq & 2 \cdot (x \cdot y \cdot sq - z \cdot sc) & 2 \cdot (x \cdot z \cdot sq + y \cdot sc) & 0 \\ 2 \cdot (x \cdot y \cdot sq + z \cdot sc) & 1 - 2 \cdot (x^2 + z^2) \cdot sq & 2 \cdot (y \cdot z \cdot sq - x \cdot sc) & 0 \\ 2 \cdot (x \cdot z \cdot sq - y \cdot sc) & 2 \cdot (y \cdot z \cdot sq + x \cdot sc) & 1 - 2 \cdot (x^2 + y^2) \cdot sq & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="647" height="106"> + <img src="rotate3dmatrix.png" alt="\begin{bmatrix} 1 - 2 \cdot (y^2 + z^2) \cdot sq & 2 \cdot (x \cdot y \cdot sq - z \cdot sc) & 2 \cdot (x \cdot z \cdot sq + y \cdot sc) & 0 \\ 2 \cdot (x \cdot y \cdot sq + z \cdot sc) & 1 - 2 \cdot (x^2 + z^2) \cdot sq & 2 \cdot (y \cdot z \cdot sq - x \cdot sc) & 0 \\ 2 \cdot (x \cdot z \cdot sq - y \cdot sc) & 2 \cdot (y \cdot z \cdot sq + x \cdot sc) & 1 - 2 \cdot (x^2 + y^2) \cdot sq & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="647" height="106"> <p> where: </p> @@ -1731,25 +1733,25 @@ <p> A 3D rotation about the X axis with the parameter <em>alpha</em> is equivalent to the matrix: </p> - <img src="rotateX.png" title="\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="220" height="106"> + <img src="rotateX.png" alt="\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha) & -\sin(\alpha) & 0 \\ 0 & \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="220" height="106"> </li> <li id="RotateYDefined"> <p> A 3D rotation about the Y axis with the parameter <em>alpha</em> is equivalent to the matrix: </p> - <img src="rotateY.png" title="\begin{bmatrix} \cos(\alpha) & 0 & \sin(\alpha) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\alpha) & 0 & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="220" height="106"> + <img src="rotateY.png" alt="\begin{bmatrix} \cos(\alpha) & 0 & \sin(\alpha) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\alpha) & 0 & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="220" height="106"> </li> <li id="RotateZDefined"> <p> A 3D rotation about the Z axis with the parameter <em>alpha</em> is equivalent to the matrix: </p> - <img src="rotateZ.png" title="\begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="220" height="106"> + <img src="rotateZ.png" alt="\begin{bmatrix} \cos(\alpha) & -\sin(\alpha) & 0 & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="220" height="106"> </li> <li id="PerspectiveDefined"> <p> A perspective projection matrix with the parameter <em>d</em> is equivalent to the matrix: </p> - <img src="perspective.png" title="\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 1 \end{bmatrix}" width="143" height="106"> + <img src="perspective.png" alt="\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 1 \end{bmatrix}" width="143" height="106"> </li> </ul>
Received on Wednesday, 22 February 2012 18:44:12 UTC