- From: Dirk Schulze via cvs-syncmail <cvsmail@w3.org>
- Date: Tue, 14 Feb 2012 06:13:16 +0000
- To: public-css-commits@w3.org
Update of /sources/public/csswg/css3-transforms
In directory hutz:/tmp/cvs-serv26669
Modified Files:
ChangeLog Overview.html Transforms.src.html rotate3dmatrix.png
rotate3dvariables.png
Log Message:
2012-02-13 dschulze@adobe.com
Corrected mistake in the rotate3d matrix.
Changed wording in introduction to match SVG and HTML.
Use capital letters on main headlines for nouns.
Fixed typos.
Index: rotate3dvariables.png
===================================================================
RCS file: /sources/public/csswg/css3-transforms/rotate3dvariables.png,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -d -r1.1 -r1.2
Binary files /tmp/cvsNIzE4Q and /tmp/cvsY2Phl5 differ
Index: ChangeLog
===================================================================
RCS file: /sources/public/csswg/css3-transforms/ChangeLog,v
retrieving revision 1.14
retrieving revision 1.15
diff -u -d -r1.14 -r1.15
--- ChangeLog 13 Feb 2012 05:55:39 -0000 1.14
+++ ChangeLog 14 Feb 2012 06:13:13 -0000 1.15
@@ -1,3 +1,9 @@
+2012-02-13 dschulze@adobe.com
+ Corrected mistake in the rotate3d matrix.
+ Changed wording in introduction to match SVG and HTML.
+ Use capital letters on main headlines for nouns.
+ Fixed typos.
+
2012-02-12 dschulze@adobe.com
Merged CSSMatrix from current spec with CSS 3D Transforms.
Added function 'isAffineTransform' that returns 'true' if the matrix doesn't have any 3D components.
Index: Overview.html
===================================================================
RCS file: /sources/public/csswg/css3-transforms/Overview.html,v
retrieving revision 1.24
retrieving revision 1.25
diff -u -d -r1.24 -r1.25
--- Overview.html 13 Feb 2012 05:55:39 -0000 1.24
+++ Overview.html 14 Feb 2012 06:13:13 -0000 1.25
@@ -36,15 +36,15 @@
<h1>CSS Transforms</h1>
- <h2 class="no-num no-toc" id=longstatus-date>Editor's Draft 13 February
+ <h2 class="no-num no-toc" id=longstatus-date>Editor's Draft 14 February
2012</h2>
<dl>
<dt>This version:
<dd> <a
- href="http://www.w3.org/TR/2012/ED-css3-transforms-20120213/">http://dev.w3.org/csswg/css3-transforms/</a>
- <!--http://www.w3.org/TR/2012/WD-css3-transforms-20120213-->
+ href="http://www.w3.org/TR/2012/ED-css3-transforms-20120214/">http://dev.w3.org/csswg/css3-transforms/</a>
+ <!--http://www.w3.org/TR/2012/WD-css3-transforms-20120214-->
<dt>Latest version:
@@ -213,10 +213,10 @@
Values and Lists </a>
<li><a href="#animation"><span class=secno>14. </span> Transitions and
- animations between transform values </a>
+ Animations between Transform Values </a>
<li><a href="#matrix-decomposition"><span class=secno>15. </span> Matrix
- decomposition for animation </a>
+ Decomposition for Animation </a>
<ul class=toc>
<li><a href="#unmatrix"><span class=secno>15.1. </span>Unmatrix</a>
@@ -228,7 +228,7 @@
</ul>
<li><a href="#mathematical-description"><span class=secno>16. </span>
- Mathematical description of transformation functions </a>
+ Mathematical Description of Transformation Functions </a>
<li><a href="#dom-interfaces"><span class=secno>17. </span> DOM Interfaces
</a>
@@ -259,10 +259,10 @@
<p><em>This section is not normative.</em>
<p> The CSS <a href="http://www.w3.org/TR/REC-CSS2/visuren.html">visual
- formatting model</a> describes a coordinate system within which each
- element is positioned. Positions and sizes in this coordinate space can be
- thought of as being expressed in pixels, starting in the upper left corner
- of the parent with positive values proceeding to the right and down.
+ formatting model</a> describes a coordinate system within each element is
+ positioned. Positions and sizes in this coordinate space can be thought of
+ as being expressed in pixels, starting in the origin of point with
+ positive values proceeding to the right and down.
<p> This coordinate space can be modified with the <a href="#effects"><code
class=property>'transform'</code></a> property. Using transform, elements
@@ -822,9 +822,9 @@
class=property>'transform'</code></a> property. This property contains a
list of <a href="#transform-functions">transform functions</a>. The final
transformation value for a coordinate system is obtained by converting
- each function in the list to its corresponding matrix (either defined in
- this specification or by reference to the SVG specification), then
- multiplying the matrices.
+ each function in the list to its corresponding matrix like defined in <a
+ href="#mathematical-description">Mathematical Description of
+ Transformation Functions</a>, then multiplying the matrices.
<table class=propdef>
<tbody>
@@ -1527,8 +1527,8 @@
is the matrix multiplication of the list of transforms.</p>
<!-- ======================================================================================================= -->
- <h2 id=animation><span class=secno>14. </span> Transitions and animations
- between transform values</h2>
+ <h2 id=animation><span class=secno>14. </span> Transitions and Animations
+ between Transform Values</h2>
<p> When animating or transitioning the value of a transform property the
rules described below are applied. The ‘<code
@@ -1616,7 +1616,7 @@
transformed element is not rendered.
<h2 id=matrix-decomposition><span class=secno>15. </span> Matrix
- decomposition for animation</h2>
+ Decomposition for Animation</h2>
<p> When interpolating between 2 matrices, each is decomposed into the
corresponding translation, rotation, scale, skew and perspective values.
@@ -1793,7 +1793,7 @@
scale3d(scale[0], scale[1], scale[2])</pre>
<h2 id=mathematical-description><span class=secno>16. </span> Mathematical
- description of transformation functions</h2>
+ Description of Transformation Functions</h2>
<p> Mathematically, all transformation functions can be represented as 4x4
transformation matrices of the following form:
@@ -1850,12 +1850,12 @@
<p> A 3D rotation with the vector [x,y,z] and the parameter
<em>alpha</em> is equivalent to the matrix:</p>
<img height=106 src=rotate3dmatrix.png
- title="\begin{bmatrix} 1 - 2 \cdot (x^2 + z^2) \cdot sq & 2 \cdot (x \cdot y \cdot sq - z \cdot sc) & 2 \cdot (x \cdot z \cdot sq + y \cdot sc) & 0 \\ 2 \cdot (x \cdot y \cdot sq + z \cdot sc) & 1 - 2 \cdot (z^2 + x^2) \cdot sq & 2 \cdot (y \cdot z \cdot sq - x \cdot sc) & 0 \\ 2 \cdot (x \cdot z \cdot sq - y \cdot sc) & 2 \cdot (y \cdot z \cdot sq + x \cdot sc) & 1 - 2 \cdot (x^2 + y^2) \cdot sq & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}"
+ title="\begin{bmatrix} 1 - 2 \cdot (y^2 + z^2) \cdot sq & 2 \cdot (x \cdot y \cdot sq - z \cdot sc) & 2 \cdot (x \cdot z \cdot sq + y \cdot sc) & 0 \\ 2 \cdot (x \cdot y \cdot sq + z \cdot sc) & 1 - 2 \cdot (x^2 + z^2) \cdot sq & 2 \cdot (y \cdot z \cdot sq - x \cdot sc) & 0 \\ 2 \cdot (x \cdot z \cdot sq - y \cdot sc) & 2 \cdot (y \cdot z \cdot sq + x \cdot sc) & 1 - 2 \cdot (x^2 + y^2) \cdot sq & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}"
width=647>
<p> where:</p>
<img height=50 src=rotate3dvariables.png
- title="\newline sc = \sin (\alpha) \cdot \cos (\alpha) \newline sq = \sin^2 (\alpha)"
- width=177>
+ title="\newline sc = \sin (\alpha/2) \cdot \cos (\alpha/2) \newline sq = \sin^2 (\alpha/2)"
+ width=221>
<li id=RotateXDefined>
<p> A 3D rotation about the X axis with the parameter <em>alpha</em> is
Index: rotate3dmatrix.png
===================================================================
RCS file: /sources/public/csswg/css3-transforms/rotate3dmatrix.png,v
retrieving revision 1.1
retrieving revision 1.2
diff -u -d -r1.1 -r1.2
Binary files /tmp/cvs1gxtCU and /tmp/cvsoGObW8 differ
Index: Transforms.src.html
===================================================================
RCS file: /sources/public/csswg/css3-transforms/Transforms.src.html,v
retrieving revision 1.27
retrieving revision 1.28
diff -u -d -r1.27 -r1.28
--- Transforms.src.html 13 Feb 2012 05:55:39 -0000 1.27
+++ Transforms.src.html 14 Feb 2012 06:13:14 -0000 1.28
@@ -90,11 +90,10 @@
<p><em>This section is not normative.</em></p>
<p>
The CSS <a href="http://www.w3.org/TR/REC-CSS2/visuren.html">visual
- formatting model</a> describes a coordinate system within which each
+ formatting model</a> describes a coordinate system within each
element is positioned. Positions and sizes in this coordinate space can
- be thought of as being expressed in pixels, starting in the upper left
- corner of the parent with positive values proceeding to the right and
- down.
+ be thought of as being expressed in pixels, starting in the origin of point
+ with positive values proceeding to the right and down.
</p>
<p>
This coordinate space can be modified with the <code
@@ -577,9 +576,8 @@
renders in through the <code class="property">'transform'</code> property. This property contains a
list of <a href="#transform-functions">transform functions</a>. The
final transformation value for a coordinate system is obtained by converting
- each function in the list to its corresponding matrix (either defined in
- this specification or by reference to the SVG specification), then multiplying
- the matrices.
+ each function in the list to its corresponding matrix like defined in <a href="#mathematical-description">Mathematical
+ Description of Transformation Functions</a>, then multiplying the matrices.
</p>
<table class="propdef">
<tbody>
@@ -1384,7 +1382,7 @@
<!-- ======================================================================================================= -->
<h2 id="animation">
- Transitions and animations between transform values
+ Transitions and Animations between Transform Values
</h2>
<p>
@@ -1493,7 +1491,7 @@
</p>
<h2 id="matrix-decomposition">
- Matrix decomposition for animation
+ Matrix Decomposition for Animation
</h2>
<p>
@@ -1666,7 +1664,7 @@
scale3d(scale[0], scale[1], scale[2])</pre>
<h2 id="mathematical-description">
- Mathematical description of transformation functions
+ Mathematical Description of Transformation Functions
</h2>
<p>
Mathematically, all transformation functions can be represented as 4x4 transformation matrices of the following form:
@@ -1717,11 +1715,11 @@
<p>
A 3D rotation with the vector [x,y,z] and the parameter <em>alpha</em> is equivalent to the matrix:
</p>
- <img src="rotate3dmatrix.png" title="\begin{bmatrix} 1 - 2 \cdot (x^2 + z^2) \cdot sq & 2 \cdot (x \cdot y \cdot sq - z \cdot sc) & 2 \cdot (x \cdot z \cdot sq + y \cdot sc) & 0 \\ 2 \cdot (x \cdot y \cdot sq + z \cdot sc) & 1 - 2 \cdot (z^2 + x^2) \cdot sq & 2 \cdot (y \cdot z \cdot sq - x \cdot sc) & 0 \\ 2 \cdot (x \cdot z \cdot sq - y \cdot sc) & 2 \cdot (y \cdot z \cdot sq + x \cdot sc) & 1 - 2 \cdot (x^2 + y^2) \cdot sq & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="647" height="106">
+ <img src="rotate3dmatrix.png" title="\begin{bmatrix} 1 - 2 \cdot (y^2 + z^2) \cdot sq & 2 \cdot (x \cdot y \cdot sq - z \cdot sc) & 2 \cdot (x \cdot z \cdot sq + y \cdot sc) & 0 \\ 2 \cdot (x \cdot y \cdot sq + z \cdot sc) & 1 - 2 \cdot (x^2 + z^2) \cdot sq & 2 \cdot (y \cdot z \cdot sq - x \cdot sc) & 0 \\ 2 \cdot (x \cdot z \cdot sq - y \cdot sc) & 2 \cdot (y \cdot z \cdot sq + x \cdot sc) & 1 - 2 \cdot (x^2 + y^2) \cdot sq & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="647" height="106">
<p>
where:
</p>
- <img src="rotate3dvariables.png" title="\newline sc = \sin (\alpha) \cdot \cos (\alpha) \newline sq = \sin^2 (\alpha)" width="177" height="50">
+ <img src="rotate3dvariables.png" title="\newline sc = \sin (\alpha/2) \cdot \cos (\alpha/2) \newline sq = \sin^2 (\alpha/2)" width="221" height="50">
</li>
<li id="RotateXDefined">
<p>
Received on Tuesday, 14 February 2012 06:13:18 UTC