- From: Dirk Schulze via cvs-syncmail <cvsmail@w3.org>
- Date: Tue, 14 Feb 2012 06:13:16 +0000
- To: public-css-commits@w3.org
Update of /sources/public/csswg/css3-transforms In directory hutz:/tmp/cvs-serv26669 Modified Files: ChangeLog Overview.html Transforms.src.html rotate3dmatrix.png rotate3dvariables.png Log Message: 2012-02-13 dschulze@adobe.com Corrected mistake in the rotate3d matrix. Changed wording in introduction to match SVG and HTML. Use capital letters on main headlines for nouns. Fixed typos. Index: rotate3dvariables.png =================================================================== RCS file: /sources/public/csswg/css3-transforms/rotate3dvariables.png,v retrieving revision 1.1 retrieving revision 1.2 diff -u -d -r1.1 -r1.2 Binary files /tmp/cvsNIzE4Q and /tmp/cvsY2Phl5 differ Index: ChangeLog =================================================================== RCS file: /sources/public/csswg/css3-transforms/ChangeLog,v retrieving revision 1.14 retrieving revision 1.15 diff -u -d -r1.14 -r1.15 --- ChangeLog 13 Feb 2012 05:55:39 -0000 1.14 +++ ChangeLog 14 Feb 2012 06:13:13 -0000 1.15 @@ -1,3 +1,9 @@ +2012-02-13 dschulze@adobe.com + Corrected mistake in the rotate3d matrix. + Changed wording in introduction to match SVG and HTML. + Use capital letters on main headlines for nouns. + Fixed typos. + 2012-02-12 dschulze@adobe.com Merged CSSMatrix from current spec with CSS 3D Transforms. Added function 'isAffineTransform' that returns 'true' if the matrix doesn't have any 3D components. Index: Overview.html =================================================================== RCS file: /sources/public/csswg/css3-transforms/Overview.html,v retrieving revision 1.24 retrieving revision 1.25 diff -u -d -r1.24 -r1.25 --- Overview.html 13 Feb 2012 05:55:39 -0000 1.24 +++ Overview.html 14 Feb 2012 06:13:13 -0000 1.25 @@ -36,15 +36,15 @@ <h1>CSS Transforms</h1> - <h2 class="no-num no-toc" id=longstatus-date>Editor's Draft 13 February + <h2 class="no-num no-toc" id=longstatus-date>Editor's Draft 14 February 2012</h2> <dl> <dt>This version: <dd> <a - href="http://www.w3.org/TR/2012/ED-css3-transforms-20120213/">http://dev.w3.org/csswg/css3-transforms/</a> - <!--http://www.w3.org/TR/2012/WD-css3-transforms-20120213--> + href="http://www.w3.org/TR/2012/ED-css3-transforms-20120214/">http://dev.w3.org/csswg/css3-transforms/</a> + <!--http://www.w3.org/TR/2012/WD-css3-transforms-20120214--> <dt>Latest version: @@ -213,10 +213,10 @@ Values and Lists </a> <li><a href="#animation"><span class=secno>14. </span> Transitions and - animations between transform values </a> + Animations between Transform Values </a> <li><a href="#matrix-decomposition"><span class=secno>15. </span> Matrix - decomposition for animation </a> + Decomposition for Animation </a> <ul class=toc> <li><a href="#unmatrix"><span class=secno>15.1. </span>Unmatrix</a> @@ -228,7 +228,7 @@ </ul> <li><a href="#mathematical-description"><span class=secno>16. </span> - Mathematical description of transformation functions </a> + Mathematical Description of Transformation Functions </a> <li><a href="#dom-interfaces"><span class=secno>17. </span> DOM Interfaces </a> @@ -259,10 +259,10 @@ <p><em>This section is not normative.</em> <p> The CSS <a href="http://www.w3.org/TR/REC-CSS2/visuren.html">visual - formatting model</a> describes a coordinate system within which each - element is positioned. Positions and sizes in this coordinate space can be - thought of as being expressed in pixels, starting in the upper left corner - of the parent with positive values proceeding to the right and down. + formatting model</a> describes a coordinate system within each element is + positioned. Positions and sizes in this coordinate space can be thought of + as being expressed in pixels, starting in the origin of point with + positive values proceeding to the right and down. <p> This coordinate space can be modified with the <a href="#effects"><code class=property>'transform'</code></a> property. Using transform, elements @@ -822,9 +822,9 @@ class=property>'transform'</code></a> property. This property contains a list of <a href="#transform-functions">transform functions</a>. The final transformation value for a coordinate system is obtained by converting - each function in the list to its corresponding matrix (either defined in - this specification or by reference to the SVG specification), then - multiplying the matrices. + each function in the list to its corresponding matrix like defined in <a + href="#mathematical-description">Mathematical Description of + Transformation Functions</a>, then multiplying the matrices. <table class=propdef> <tbody> @@ -1527,8 +1527,8 @@ is the matrix multiplication of the list of transforms.</p> <!-- ======================================================================================================= --> - <h2 id=animation><span class=secno>14. </span> Transitions and animations - between transform values</h2> + <h2 id=animation><span class=secno>14. </span> Transitions and Animations + between Transform Values</h2> <p> When animating or transitioning the value of a transform property the rules described below are applied. The ‘<code @@ -1616,7 +1616,7 @@ transformed element is not rendered. <h2 id=matrix-decomposition><span class=secno>15. </span> Matrix - decomposition for animation</h2> + Decomposition for Animation</h2> <p> When interpolating between 2 matrices, each is decomposed into the corresponding translation, rotation, scale, skew and perspective values. @@ -1793,7 +1793,7 @@ scale3d(scale[0], scale[1], scale[2])</pre> <h2 id=mathematical-description><span class=secno>16. </span> Mathematical - description of transformation functions</h2> + Description of Transformation Functions</h2> <p> Mathematically, all transformation functions can be represented as 4x4 transformation matrices of the following form: @@ -1850,12 +1850,12 @@ <p> A 3D rotation with the vector [x,y,z] and the parameter <em>alpha</em> is equivalent to the matrix:</p> <img height=106 src=rotate3dmatrix.png - title="\begin{bmatrix} 1 - 2 \cdot (x^2 + z^2) \cdot sq & 2 \cdot (x \cdot y \cdot sq - z \cdot sc) & 2 \cdot (x \cdot z \cdot sq + y \cdot sc) & 0 \\ 2 \cdot (x \cdot y \cdot sq + z \cdot sc) & 1 - 2 \cdot (z^2 + x^2) \cdot sq & 2 \cdot (y \cdot z \cdot sq - x \cdot sc) & 0 \\ 2 \cdot (x \cdot z \cdot sq - y \cdot sc) & 2 \cdot (y \cdot z \cdot sq + x \cdot sc) & 1 - 2 \cdot (x^2 + y^2) \cdot sq & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" + title="\begin{bmatrix} 1 - 2 \cdot (y^2 + z^2) \cdot sq & 2 \cdot (x \cdot y \cdot sq - z \cdot sc) & 2 \cdot (x \cdot z \cdot sq + y \cdot sc) & 0 \\ 2 \cdot (x \cdot y \cdot sq + z \cdot sc) & 1 - 2 \cdot (x^2 + z^2) \cdot sq & 2 \cdot (y \cdot z \cdot sq - x \cdot sc) & 0 \\ 2 \cdot (x \cdot z \cdot sq - y \cdot sc) & 2 \cdot (y \cdot z \cdot sq + x \cdot sc) & 1 - 2 \cdot (x^2 + y^2) \cdot sq & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width=647> <p> where:</p> <img height=50 src=rotate3dvariables.png - title="\newline sc = \sin (\alpha) \cdot \cos (\alpha) \newline sq = \sin^2 (\alpha)" - width=177> + title="\newline sc = \sin (\alpha/2) \cdot \cos (\alpha/2) \newline sq = \sin^2 (\alpha/2)" + width=221> <li id=RotateXDefined> <p> A 3D rotation about the X axis with the parameter <em>alpha</em> is Index: rotate3dmatrix.png =================================================================== RCS file: /sources/public/csswg/css3-transforms/rotate3dmatrix.png,v retrieving revision 1.1 retrieving revision 1.2 diff -u -d -r1.1 -r1.2 Binary files /tmp/cvs1gxtCU and /tmp/cvsoGObW8 differ Index: Transforms.src.html =================================================================== RCS file: /sources/public/csswg/css3-transforms/Transforms.src.html,v retrieving revision 1.27 retrieving revision 1.28 diff -u -d -r1.27 -r1.28 --- Transforms.src.html 13 Feb 2012 05:55:39 -0000 1.27 +++ Transforms.src.html 14 Feb 2012 06:13:14 -0000 1.28 @@ -90,11 +90,10 @@ <p><em>This section is not normative.</em></p> <p> The CSS <a href="http://www.w3.org/TR/REC-CSS2/visuren.html">visual - formatting model</a> describes a coordinate system within which each + formatting model</a> describes a coordinate system within each element is positioned. Positions and sizes in this coordinate space can - be thought of as being expressed in pixels, starting in the upper left - corner of the parent with positive values proceeding to the right and - down. + be thought of as being expressed in pixels, starting in the origin of point + with positive values proceeding to the right and down. </p> <p> This coordinate space can be modified with the <code @@ -577,9 +576,8 @@ renders in through the <code class="property">'transform'</code> property. This property contains a list of <a href="#transform-functions">transform functions</a>. The final transformation value for a coordinate system is obtained by converting - each function in the list to its corresponding matrix (either defined in - this specification or by reference to the SVG specification), then multiplying - the matrices. + each function in the list to its corresponding matrix like defined in <a href="#mathematical-description">Mathematical + Description of Transformation Functions</a>, then multiplying the matrices. </p> <table class="propdef"> <tbody> @@ -1384,7 +1382,7 @@ <!-- ======================================================================================================= --> <h2 id="animation"> - Transitions and animations between transform values + Transitions and Animations between Transform Values </h2> <p> @@ -1493,7 +1491,7 @@ </p> <h2 id="matrix-decomposition"> - Matrix decomposition for animation + Matrix Decomposition for Animation </h2> <p> @@ -1666,7 +1664,7 @@ scale3d(scale[0], scale[1], scale[2])</pre> <h2 id="mathematical-description"> - Mathematical description of transformation functions + Mathematical Description of Transformation Functions </h2> <p> Mathematically, all transformation functions can be represented as 4x4 transformation matrices of the following form: @@ -1717,11 +1715,11 @@ <p> A 3D rotation with the vector [x,y,z] and the parameter <em>alpha</em> is equivalent to the matrix: </p> - <img src="rotate3dmatrix.png" title="\begin{bmatrix} 1 - 2 \cdot (x^2 + z^2) \cdot sq & 2 \cdot (x \cdot y \cdot sq - z \cdot sc) & 2 \cdot (x \cdot z \cdot sq + y \cdot sc) & 0 \\ 2 \cdot (x \cdot y \cdot sq + z \cdot sc) & 1 - 2 \cdot (z^2 + x^2) \cdot sq & 2 \cdot (y \cdot z \cdot sq - x \cdot sc) & 0 \\ 2 \cdot (x \cdot z \cdot sq - y \cdot sc) & 2 \cdot (y \cdot z \cdot sq + x \cdot sc) & 1 - 2 \cdot (x^2 + y^2) \cdot sq & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="647" height="106"> + <img src="rotate3dmatrix.png" title="\begin{bmatrix} 1 - 2 \cdot (y^2 + z^2) \cdot sq & 2 \cdot (x \cdot y \cdot sq - z \cdot sc) & 2 \cdot (x \cdot z \cdot sq + y \cdot sc) & 0 \\ 2 \cdot (x \cdot y \cdot sq + z \cdot sc) & 1 - 2 \cdot (x^2 + z^2) \cdot sq & 2 \cdot (y \cdot z \cdot sq - x \cdot sc) & 0 \\ 2 \cdot (x \cdot z \cdot sq - y \cdot sc) & 2 \cdot (y \cdot z \cdot sq + x \cdot sc) & 1 - 2 \cdot (x^2 + y^2) \cdot sq & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}" width="647" height="106"> <p> where: </p> - <img src="rotate3dvariables.png" title="\newline sc = \sin (\alpha) \cdot \cos (\alpha) \newline sq = \sin^2 (\alpha)" width="177" height="50"> + <img src="rotate3dvariables.png" title="\newline sc = \sin (\alpha/2) \cdot \cos (\alpha/2) \newline sq = \sin^2 (\alpha/2)" width="221" height="50"> </li> <li id="RotateXDefined"> <p>
Received on Tuesday, 14 February 2012 06:13:18 UTC