
XML Encryption and Access Control 
A comparison and a 2nd encryption model

Draft 29.10.2000

Christian Geuer-Pollmann, University of Siegen
please send comments to geuer-pollmann@nue.et-inf.uni-siegen.de

1 Introduction
In the last weeks and month, we have seen different proposals and collections of re-
quirements for XML encryption and some papers which describe access control mecha-
nisms for XML documents. This paper is a collection of some ideas, how both fields 
could fit together

1.1 Motivation
XML is highly structured data — Data Encryption is destroying internal structure of 
data — These two contradictions have to be brought together, without conflicting too 
much.

1.2 Subtree encryption (element wise)
The two published proposals by [Imamura] and [Simon, LaMacchia] have in common 
that they take a complete sub tree (descendant-or-self(), maybe with of without attri-
butes of self()), serialize this subtree into a text representation, encrypt it using some 
encryption mechanism like a symmetric cipher and replace the unencrypted part of the 
document with the resulting cipher text. 
The subtree encryption is an end-to-end-security approach, in which the document 
includes all sensitive information in encrypted (secured) form. It allows to include 
multiple encrypted subtrees, and depending on the choosen model and granularity, it 
is possible to select even single attributes for encryption. 
In the following illustration, the „Public Nodes“ do not need to be confidential (en-
crypted), but the one at the bottom is encrypted in the subtree. 
To encrypt a subtree, the nodes that should be secured are selected: 

mailto:geuer-pollmann@nue.et-inf.uni-siegen.de


1.3 Server-side Access Control
The server-side access control scenarios by [Damiani, et.al.], [Bertino, et.al.] and [Ku-
do, Hada] can react more flexible in their content model: 
• The XML entity is stored on a server. It is parsed into a DOM tree. 
• If a client requests the entity, he is authenticated and it’s authorisations are checked. 
• Based on these authorisations (access control lists), the DOM tree is labeled. 
• After labeling the nodes, a pruning transformation is applied; all nodes to which the client 

has no access permission are deleted from the tree. 
NOTE: Not only end-nodes of the tree can be deleted, even node which have childs. In this 
case, the childs become childs of their „grandparent“. 

• The last step is the serialisation of the resulting tree. 
Server-side AC can completely restructure and rebuild the tree, based on the access 
control lists. It is not forced to make a complete subtree opaque, but it can let some 
elements childs visible(unencrypted) to the client without enforcing the root of the 
subtree (self()) being visible. 

1.4 Comparison

SUBTREE ENCRYPTION

Subtree encryption (element wise) is a good and straight-forward solution for XML En-
cryption and it will fit into most situations. The encrypted entity can be transferred to 
the client without a need for an additional encryption on the transport layer (like SSL). 
The XML entities can be stored encrypted on the (potentially insecure and vulnerable) 
web server. The decisions about access rights to different portions of the document can 
be made by the document creator and be immediately applied to the XML document. 
Encryption has to be applied to each document individually, but in analogy to extensi-
ble stylesheet transformations (XLST), it should be possible to apply an „encryption 
policy stylesheet“ to a XML document which allows an automatic encryption process 
based on a defined policy. 



SERVER-SIDE ACCESS CONTROL

In contrast to this model, server-side access control has much more flexibilty in the re-
sulting document, because the confidentiality transformation is not constrained to 
complete subtrees. The pruning of sensitive or classified information prevents the re-
questing client from accessing this information, but during the transfer to the client, 
there is a need for an additional encryption on transport layer (like SSL). The access 
control processor needs to be secure and trustworthy, because this centralised ele-
ment has access to the complete information base. A disadvantage is the need to make 
AC decisions online. 
The access rights for a specific document have to be added to the ACL (access control 
list) database. An advantage of this model is the ability of applying a specific ACL to a 
large class of documents (based on DTD/Schema). 

It could be nice to get the best from subtree encryption and server-side AC:
• allow unencrypted (visible) content within an encrypted subtree 
• does not need a trustworthy online access control processor (only encryption, no online 

transformations)
• no need for additional encryption

2 The idea

2.1 Outline
The rough idea is to take the nodes which have to be secured and encrypt each node 
individually(with a node-specific encryption key). Include all encrypted nodes, toge-
ther with the key information, in a new element. 
• Transform the XML document to a DOM tree, 
• label the nodes and store the positions of each node (positions are: "What are the ance-

Model Subtree encryption
Server-side access 

control

Secure Complete subtrees possible possible

Secure only Attribute values
possible (depends on pro-

posal)
possible

Leave „deep“ descendants visible no yes

Needs trustworthy server no yes

Automation of access/encryption decisions
needs some sort of style 

sheets
yes

Needs additional transport security
no (even complete 

instance can be encryp-
ted)

yes

New recipients can be added without reencryp-
ting the contents

no only new XACL

Table 1: Comparison between the existing models (disadvantages are marked grey)



stor()s, descendant()s, preceding-sibling()s and following-sibling()s")
• Attach the original position information of the nodes to the nodes and encrypt each node/

position with an individual key (flattening the tree and encrypting the single nodes)
• Based on the Access-Control-Lists or encryption decisions, make a package for each client, 

which contains the keys for the nodes which the client is permitted to see and encrypt the 
package for the specific client. Each client gets it’s own collection of node keys, which is 
encrypted with a key-encryption-key. 

• To decrypt the document, 
• a client picks his key package, 
• decrypts his keys, 
• decrypts all elements for which he has keys and 
• rebuilds his „personal“ tree based on the position information attached to the nodes. 

In the above picture, the white node is public accessible. The key information struc-
tures are not shown in the picture. 
The key packages allow a level of indirection in the key management process. It is pos-
sible to group complete classes of element keys into packages, which are encrypted 
using a symmetric package-key. This key will be encrypted with the public key of each 
recipient. 

2.2 Comparison
This „new“ model has some advantages, as well as some disadvantages:
• The model allows the flexibility of server-side access control in conjunction with a real 

encryption; the re-assembling of the tree allows public visible nodes deep inside a almost 
completely encrypted subtree. 

• It is possible to add dummy nodes to the document. The individual keys for these nodes 
are not included in any client-key-package. These dummy nodes allow to prevent traffic 
analysis attacks. 

• The big problem of this model is performance:
• To attach the position information to all nodes, the size of the encrypted document is 

increased. 
• The encryption and decryption processes are not straightforward like for subtree 

encryption because of the individual encryptions of the different nodes.
• Each node needs it’s own cryptographic key, so much key material is needed. 



• The flattening and re-assembling transformations cost much more processing power 
and memory than symmetric encryption and decryption. 

• If many different recipients (with different access rights to the information) are added to 
the document, the performance gets better than subtree encryption. This assumes that for 
each recipient, the subtree encryption adds a new subtree, which blows up the document 
size. The larger the encrypted subtrees are and if the number of recipients grow, the system 
performance gets better. 

• The key management allows more levels of indirection. Key management is relatively easy

2.3 Summary
XML as highly structured information has to be transformed by a structure-de-
stroying process (encryption). 
The presented model allows 
• the flexibility of the access control models in a real encryption scenario
• traffic analysis can be prevented. 
The model costs more resources:
• bandwidth to transfer, 
• storage of documents, 
• processing power for transformations, 
• memory for complex tree operations, 
• good and fast cryptographic random numbers for lots of key material. 
NOTE: The current overview does not highlight the key management. I will have this 
till the workshop starts. 

References
[Imamura] Another proposal of XML Encryption, Takeshi Imamura (Mon, Aug 14 

Model
Subtree 

encryption
Server-side 

access control

New 
encryption 

model

Secure Complete subtrees possible possible possible

Secure only Attribute values
possible (depends 

on proposal)
possible possible

Leave „deep“ descendants visible no yes yes

Needs trustworthy server no yes no

Automation of access/encryption decisions
needs some sort 

of style sheets
yes

needs some sort 
of style sheets

Needs additional transport security
no (even complete 

instance can be 
encrypted)

yes no

New recipients can be added without reen-
crypting the contents

no only new XACL yes

Table 2: Comparison between all models



2000) 
[Simon, LaMacchia] XML Encryption strawman proposal Ed Simon and Brian LaMac-
chia (Wed, Aug 09 2000)
[Damiani, et.al.] Design and Implementation of an Access Control Processor for XML 
Documents, Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi 
and Pierangela Samarati 
[Bertino, et.al.] Controlled Access and Distribution of XML Documents, E. Bertino, S. 
Castano, E. Ferrari, M. Mesiti
[Kudo, Hada] XML Document Security and e-Business applications, M. Kudo and S. Ha-
da, Nov. 2000


	1 Introduction
	1.1 Motivation
	1.2 Subtree encryption (element wise)
	1.3 Server-side Access Control
	1.4 Comparison
	Subtree encryption
	Server-side access control


	2 The idea
	2.1 Outline
	2.2 Comparison
	2.3 Summary


