Towards secure XML

Paul Brandt, MSc., Netherlands Organization for Applied Scientific Research TNO, +31.70.374.0326, p.brandt@fel.tno.nl
Frederik Bonte, BSc., Netherlands Organization for Applied Scientific Research TNO, +31.53.480.2111, bonte@fel.tno.nl
The following describes some thoughts we have on secure XML as an implementation for our Information Bound Security concept. Presented and open for discussion are topics as: taking encryption to the meta-level, multi-level security, security sheets and key management. However, before diving into these specifics first a thought is spent on the need for encryption, and specifically within XML. We need to have the overall objective right before we should develop a standard supporting it.

The purpose of this document is to bring new ideas to the current discussion on XML encryption and to serve as possible over-arching vehicle for XML encryption

The Hague, October 2000

1. Why is security required within XML?

When discussing security, the following question is asked frequently: “Is this product/standard/system/etc. secure?”. Standard answer to this are the following two questions:

“What do you mean with ‘product/standard/system/etc.’?”

“What do you mean with ‘secure’?”.

We can narrow this down to the question that will be asked about XML and encryption: “Is encrypted XML secure?” or a variant like: “How secure is encrypted XML?”.

Since XML is a standard for information mark-up, we apparently are talking about information security.

The objective of information security is to protect valuable information. It is clear that we are going to establish a standard for information security within XML. Before doing so, as with every information security project we have to find answers to the following questions:

1. What is the purpose of information security within XML?

2. When should information security within XML employed?

Before we can jump into the details of XML encryption:

3. How is information security within XML employed?

As will be observed later, XML encryption addresses more than encryption alone. Therefore we consider the term Secure XML (or sXML for short) to be more appropriate and will make use of that throughout the document.

Back to basics: security is a means to guarantee 5 different aspects, i.e.:

· Availability

· Integrity

· Confidentiality

· Authentication

· Accountability

We will shortly elaborate on each aspect and identify its applicability to sXML.

1.1 Availability

Availability assures that the information and essential services will be available for the authorised users at the required moment, including the efforts required to regain lost information.

Cryptography in general does not provide any functionality to guarantee availability. As a result, the availability aspect won’t be addressed by sXML.

1.2 Integrity

Integrity guarantees the correctness and completeness of the information. Cryptography (such as hashes or check-sum mechanisms) is a perfect means to assure the information integrity. Both are used to detect changes to the original information, however hashes are more focussed on malicious changes whilst check-sums are applied to detect coincidentally changes.

As such, we consider the integrity issue as a requirement to be addressed by sXML.

1.3 Confidentiality

Confidentiality protects sensitive information against disqualified examination by unauthorised individuals, entities or processes. Clearly, cryptography provides excellent means to support confidentiality by applying symmetric or asymmetric encryption mechanisms.

Therefor we consider the confidentiality issues as a requirement to be addressed by sXML.

1.4 Authentication

Authentication assures that the identity of the source indeed is identical to what it is claimed to be and can be applicable to persons, processes, systems or information. Cryptography, and more specific the use of asymmetric encryption, provides means to assure the authentication, also known as non-repudiation.

The authentication aspect has been subject to study already by the Digital Signature Working Group. Strictly speaking, digital signatures guarantees two security assets: the authentication as well as the integrity. Already some discussions have taken place within the XML encryption group regarding this issue. In our believe, sXML should address the authentication issue as a requirement however this can be done by incorporating the DigSign recommendation.

1.5 Accountability

Accountability records the responsibility of the individuals belonging to the organisation for which a policy regarding information security has been established. This aspect thus relates to organisations and responsibilities. Therefor cryptography is not in scope. That is, not directly: control and management of cryptographic keys are an indirect derivative. To that end we feel the key management aspects of accountability to be requirements to be addressed by sXML.

1.6 Conclusion

The overall objective of sXML is to guarantee the assets integrity, confidentiality, authentication and accountability (key management). These assets shall be taken as high level requirements to the design of sXML and should be further elaborated to arrive at more tangible requirements.

2. Concept description

The following describes the aspects we think are critical to realise a secure XML environment (sXML). Not all of them are new ideas but are described to serve as basement for further discussion.

2.1 Source-level encryption

Within an XML source document the data content is described by its corresponding <element>, whilst all <elements> are defined in relation to eachother in the corresponding DTD (or schema).

By defining a <secure> tag and placing it around one or more <elements> in the XML source document, the authoring tool can encrypt the data content, including the embracing <element>-tags. The application processing the (now secured) XML source document, recognises the <secure> tag and will take appropriate actions to decrypt the contents of the <secure> tag, if the appropriate key information is provided to it (for the moment we will assume this information has been provided somehow). If proper authorization for the secure content is prohibited, the application can only skip to the plain part of the XML source document (i.e. consecutively following the </secure> tag).

Naturally some information is to be provided in relation to the <secure> tag, in order to be able to correctly decrypt the encrypted content, basically encryption algorithm and the proper key.

The following figure depicts this concept.

[image: image1.wmf]Name

Patient

SocialSecur

ityNo

Source

Diagnosis

Record

Gender

*

<Patient>

 <Name>

Alice

</Name>

 <Gender>

Female

 </Gender>

 <Record>

<secure>

Jkf

*

93b

&&

ekj

_

F

 </secure>

 </Record>

 <

SocSctyNo

>

<secure>

FkJJhn

_003*H$.

Kjh

 <

/secure

>

 </

SocSctyNo

>

</Patient>

Security Sheet

encryption & decryption rules

"Valid

XML

"

"Secure

XML

"

This approach is very well suited for occasional events in which the author is well familiar with the required confidentiality that is to be guaranteed. In a situation, however, where the same type of information is to be presented or transferred frequently, this approach is rather cumbersome since each XML source document requires explicit securification.

2.2 Meta-level encryption

2.2.1 Reusing the security regulations

Acknowledging the fact that XML has been developed in order to provide a way to structure the data independently from the data content itself, actually means that (part of) organisations will structure their day-to-day data flows in DTD’s or schemata. Following that line of thinking it is clear that identifying the encryption at the DTD or schema level is in favour of a source-level type solution in which every instance of the same data flow is to be encrypted separately. In such environments the approach should be supported in which encryption is defined in accordance to these DTD’s or schemata. This enables an organisation to define an implementation of its security regulations once for each DTD.

The following figure depicts the concept of a secure DTD (or secure Schema).

[image: image2.wmf]<Patient>

 <Name>

Alice

</Name>

 <Gender>

Female

 </Gender>

 <Record>

 <Diagnosis>

Flu in left arm

 </Diagnosis>

 <Source>

Dr. B. Smith

 </Source>

 </Record>

 <

SocSctyNo

>

265-3997467-00-1-3298

</

SocSctyNo

>

</Patient>

DTD

/Schema

 standard

XML

 Source

Name

Patient

SocialSecur

ityNo

Source

Diagnosis

Record

Gender

*

<Patient>

 <Name>

Alice

</Name>

 <Gender>

Female

 </Gender>

 <Record>

<secure>

Jkf

*

93b

&&

ekj

_

F

 </secure>

 </Record>

 <

SocSctyNo

>

<secure>

FkJJhn

_003*H$.

Kjh

 <

/secure

>

 </

SocSctyNo

>

</Patient>

 secure

XML

 Source

As can be observed, now every instance or source-document will automatically follow the encryption rules as identified in its corresponding DTD. It follows from this that there is no need anymore for a ‘plain’ XML-source; the authoring tool now is able to directly encrypt the content of the secure node at the very moment it becomes available. As a result, no plain copies of the text will be stored, forgotten and available for unauthorised access.

Unfortunately enough, the current XML specification cannot cope with this idea since its implementation would violate the DTD syntax.

2.2.2 The confidential DTD

A DTD is an implementation of how an organisation structures its data and as such parts thereof may very well be subject to confidentiality regulations. As a result, not only the XML source should be subject to encryption, also DTD’s or schemata should. Clearly, any encryption of part of the DTD will result in a violation of the current XML specification. Still, it is a requirement and should be addressed.

2.3 Security Sheet Markup Language (SSML)

While thinking about Security in XML (sXML) we have seen many proposals on how to include security describing tags in XML code. The problem with this is the violation of the extensibility of XML, and the difficulty with actually combining two different DTD's (one with the user's XML definition and one with the security definition).

Following the XML concept of separating content from its meaning, its representation, etcetera, clearly encryption rules should be addressed the same way; separate it from the content itself. In this way the problem of XML violation can be solved simultaneously.

We propose the use of, what we would like to call, security-sheets. These sheets will work roughly identical to 'traditional' style-sheets, in separating the actual security description from the XML code. An XML file that references a style-sheet can be converted to a particular view of the XML content. Similarly, a secure XML file may reference a security-sheet that specifies the encryption rules applicable to the data in the sXML file.

As a result, a secure XML environment consists of the triplet {DTD, XML Source Document, Security Sheet}. Similar to the definition of “valid XML”, the term “Secure XML” can now be defined as follows:

An XML document is identified secure if and only if:

1. it is valid according to its DTD, and

2. it is encrypted (and optionally signed) according to the rules as established in its corresponding security-sheet.

According to this definition secure XML needs to be valid XML as well, the reasons for which are left as an exercise to the reader.

This is depicted below:

[image: image3.wmf] secure

XML

 Source(s)

secure

DTD

/Schema

Name

Patient

Source

Diagnosis

Gender

*

MedRecord

attribute:

Secure =

True

SecurityInfo

SocialSecurity

No

attribute:

Secure =

True

SecurityInfo

<Patient>

 <Name>

Bill

</Name>

 <Gender> M

ale

 </Gender>

 <

MedRecord

>

HgFFc

*

7el

(_

m

.(

3n

</

MedRecord

>

 <

SocSctyNo

>

(*

3hbhFke

&

4Jhfbmwe3b

</

SocSctyNo

>

</Patient>

<Patient>

 <Name>

Alice

</Name>

 <Gender>

Female

 </Gender>

 <

MedRecord

>

Jkf

*

93b

&&

ekj

_

F

</

MedRecord

>

 <

SocSctyNo

>

FkJJhn

_003*H$.

Kjh

</

SocSctyNo

>

</Patient>

Through the security-rules as provided by the Security-sheet, a one-to-one relationship is established and maintained between the encrypted data content and the level of authority the owner of the key is approved to. Naturally, the key will be provided to the consumer of the information in a separate process.

In short, similar to the situation in which HTML can be generated from XML by applying XSLT, sXML can be generated from XML by applying SSML. In addition, though, XML can be regenerated from sXML by applying SSML again which is in clear contrast to the HTML analogy:

XML + XSLT = HTML

XML + SSML = sXML

sXML + SSML = XML
2.3.1 Advantages

· The encryption rules may be implemented once and used throughout the entire company similar to schemas and style-sheets.

· DTD, schema and XML code are not mixed with security tags (XML authors don't need to know the actual process of encryption and the high-level tags that are involved).

· A different type of classification can be applied to a document by simply redirecting its security-sheet reference.

· Any form of encryption in combination with authentication and validation can be implemented in the security sheet, depending on the requirements and/or security policy of a company.

· The use of security-sheets will enable encryption of not only content within the XML source document, but moreover encryption of parts of the DTD or Schema itself becomes possible.

· The very moment XML content is being created (extracted from a database or inserted into a form or document by an author), in accordance with its security-sheet it will be encrypted instantaneously, leaving no room for (copies of) plain text versions of the confidential content.

2.3.2 Disadvantages

· A separate component is required to convert the plain text XML code to encrypted XML code, similar to the various tools that are available to parse and evaluate XSL-Transformations.
The process shall be reversible of course; encryption should not require a separate tool. Any tool should be indifferent whether it is used for encrypting or decrypting.
Decryption components could eventually be made available so that anyone using standard browsers can read secured files, and decrypt them without specialised software.
Whether this prerequisite is an actual disadvantage or not is to be experienced.

· The DTD or schema and XML content shall remain well-formed according to the XML specification. Therefore, besides encrypted XML content the converter software shall also provide a new DTD/Schema that applies to the encrypted XML structure. Similarly, upon decryption the original DTD code shall become available again.
To do this the original DTD/Schema may also be encrypted and replaced by a version that allows for the presence of an encrypted block in stead of the former tag structure of the encrypted XML-tag. Upon decryption the encrypted DTD components may be (partially) decrypted and placed in their proper location.

2.4 Multi-level security

Despite any of the above a requirement towards the ability of providing multiple levels of security, nested or even overlapping occurrences, is seen as a necessary addition. This multi-level security can be interpreted similar to a building that is divided in public areas and restricted areas. The restricted area's themselves may have multiple even more restricted area's for which other keys are required.

For instance, one single document in which various security classifications apply to distinct sections would greatly improve the document management process: In stead of having to manage as many basically identical documents as applied levels of classification now a modification of the content is only to be performed once, indeed at the one and only document carrying all content.

As each level of encryption shall be decryptable as it stands, the resulting XML-file shall of course maintain its well-formedness as well as correctness towards its (possibly partially) decrypted DTD at all times.

Multi-level security can be easily incorporated in an SSML environment.

2.5 Key Management

Since in principle each distinct element or tag can be subject to encryption with a distinct key/algorithm combination, the increase in number of keys in strict relation to encryption algorithms, authority levels and (groups of) individuals is above any doubt. Indeed in an interactive web environment some arrangements have to be made between the author and the consumer of the encrypted information. This can be done either by asymmetric keys (PKI's) or by providing the consumer somehow with the appropriate symmetric key: information access control becomes key access control. Key management will thus become an issue which, to our opinion, should be addressed adjacent to XML encryption; the latter will only become an actual, widely used standard, if it is supported by a true key management mechanism. From that perspective, key management literally becomes a "key issue" :-)

Key management requires the ability to control the generation of keys in relation to the applied encryption algorithm. Notably for symmetric keys a requirement exist to keep track of the distribution in relation to the security level and expiration dates. Besides these, requirements exist in relation to the filing, modification, use and destruction of keys. Clearly, the quality of the security system is as good as the key management mechanism: the moment keys are known the information the keys are protecting, are also known.

In addition, multi-level security systems require corresponding hierarchies in keys and key management must be able to cope with that.

The XML family already contains several mechanisms upon which key management can be built. The idea of URI’s to access keys based upon XLL in relation to the security restrictions described in a security sheet is an obvious starting point.

Currently, we have implemented X.509 to support PKI access.

3. Suggested implementation

3.1 SSML description

An XML file may contain a security reference that looks like:

 <?xml-securitysheet type="text/ssml" href="secure.ssml"?>

This link may trigger the evaluation tool to encrypt the required tags in the rest of the XML-file. For a description of which tags to encrypt we would like to point to the XSL-Transformation language. This language supports flexible selection of particular tags useful for control of the encryption process.

<ssml:encryption match="TAG_1 | TAG_2">

 <!-- Encryption description code here -->

 </ssml:encryption>

This example encrypts everything included between the <TAG_1> tags or the <TAG_2> tags with the parameters specified between the <ssml:encryption> tags.

The XSLT language describes many more different ways to choose between tags. All of these may be useful to write a flexible encryption policy. For the actual encryption process several XML propositions have already been made, particularly:

1. The strawman proposal by Ed Simon

2. The Specification of Element-wise XML Encryption by Takeshi Imamura

3.1.1 We believe that these may serve as a plausible description language of how to encrypt the content of each tag. Though a lot of discussion may still be required before a final encryption schema has been composed.

3.1.2 Example

The following depicts an example of an SSML file. The ENCRYPT tags used serve only as a reference. It is not intended in any way to hint at an encryption method that will serve all requirements.

This example merely illustrates a vision of SSML in which XSLT is combined with a yet to be determined set of XML security tags, thus allowing the encryption protocol to be stored apart from the data set.

<?xml version="1.0" standalone="no"?>

<ssml:securitysheet xmlns:ssml="http://www.tno.nl/2000/SecureXML"?>

 <!-- match the root element and apply all security templates. -->

 <ssml:template match="\">

 <ssml:apply-templates/>

 </ssml:template>

 <!-- Encrypt all employees -->

 <ssml:template match="employee">

 <ENCRYPT>

 <ALGORITM>RSA-2000</ALGORITHM>

 <KEY LOCATION="keys/keyfile.dat">ABk8sKa</KEY>

 <OWNER>C15_John_Doe</OWNER>

 </ENCRYPT>

 <!-- allow nested encryption -->

 <ssml:apply-templates/>

 </ssml:template>

 <!-- Encrypt phone tag when it occurs within the private tag -->

 <ssml:template match="private/phone">

 <!-- Encryption, no nesting -->

 <ENCRYPT>

 <ALGORITM>DES-128</ALGORITHM>

 <KEY LOCATION="keys/keyfile.dat">D7hJb85G</KEY>

 <OWNER>C12_Mike_Doe</OWNER>

 </ENCRYPT>

 </ssml:template>

 <!-- Encrypt all projects with the parameter classified="true" -->

 <ssml:template match="project">

 <ssml:if test="@classified='true'">

 <ENCRYPT>

 <ALGORITM>RSA-2000</ALGORITHM>

 <KEY LOCATION="keys/keyfile.dat">ABk8sKa</KEY>

 <OWNER>C15_John_Doe</OWNER>

 </ENCRYPT>

 </ssml:if>

 </ssml:template>

 </ssml:securitysheet>

3.2 Multi-level security

XSLT describes transformations in different layers of the XML-tree code. This functionality may be used to create documents that have multiple levels of security.

As a part of the XML-code is encrypted, the SSML description may include something similar to:

 <ssml:apply-security [select="TAG_3"] />

� EMBED SmartDraw.2 ���

[image: image4.wmf]Name

Patient

SocialSecur

ityNo

Source

Diagnosis

Record

Gender

*

<Patient>

 <Name>

Alice

</Name>

 <Gender>

Female

 </Gender>

 <Record>

<secure>

Jkf

*

93b

&&

ekj

_

F

 </secure>

 </Record>

 <

SocSctyNo

>

<secure>

FkJJhn

_003*H$.

Kjh

 <

/secure

>

 </

SocSctyNo

>

</Patient>

Security Sheet

encryption & decryption rules

"Valid

XML

"

"Secure

XML

"

_1032955005.bin

