
Issue #12 HTTP Status Codes aka 500 v 200

Context: SOAP/XMLP HTTP Binding

Section 6.2 of the SOAP/1.1 [1] and XMLP/SOAP [2] states:

"6.2 SOAP HTTP Response

SOAP HTTP follows the semantics of the HTTP Status codes for communicating status
information in HTTP. For example, a 2xx status code indicates that the client's
request including the SOAP component was successfully received, understood, and
accepted etc.

In case of a SOAP error while processing the request, the SOAP HTTP server MUST
issue an HTTP 500 "Internal Server Error" response and include a SOAP message in
the response containing a SOAP Fault element (see section 4.4) indicating the SOAP
processing error.“

There is discussion of whether it is appropriate to use the HTTP 5xx status code to signal
the failure of a SOAP processor to process a message delivered in an HTTP POST request
message.

Possible Resolutions

Use 2xx status codes for ALL XMLP/SOAP messages carried
in HTTP response messages

Use 5xx status code for ALL XMLP/SOAP Fault messages in
HTTP response messages (and 2xx for ALL non-Fault
XMLP/SOAP messages) (status quo I think).

Use 2xx status code for some (TBD) classes of XMLP/SOAP
Fault message and 5xx for some (TBD) classes of
XMLP/SOAP Fault message carried in HTTP responses.

Arguments (1)

Some degree of discussion of
1) Whether the HTTP specs. allow re-

writing of response content.
2) Whether common implementations

allow this behaviour to be
configured into origin, proxy and
intermediary servers.

3) Does it actually happen in practice.

Some HTTP intermediaries can be
configured to automatically rewrite the
body of HTTP 500 response
messages, e.g., to provide more
helpful error messages; this rewriting
will interfere with the delivery of a
SOAP fault. Such intermediaries might
be HTTP origin servers acting in front
of a CGI-based implementation, but
may also occur in explicit or
transparent proxy servers.
(from Larry Masinter)

Seem to hinge fundamentally on
whether we view SOAP as layer on-
top of HTTP or as an extension of
HTTP

SOAP and HTTP processing for SOAP
bound to HTTP are inseparable. The
SOAP/HTTP processor IS an HTTP
processor and HTTP semantics apply
on internal failure.

SOAP and HTTP processing are
separate. 5xx should be used only to
indicate internal failure of an HTTP
server/intermediary. Should NOT be
used to signal failure of a layered
SOAP processor.

NotesPro 5xx (for Faults)Pro 2xx (for Faults)

Arguments (2)

Correct operation of other web
applications: search engines, proxies,
annotation engines etc. rely on the
correct use of HTTP status codes.
Making inappropriate use of 2xx status
codes to will damage the operation of
these (pre-existing) web applications.
Must observe HTTP semantics

"It is part of life when living within
HTTP (which is a transfer protocol
and not a transport protocol) - HTTP
owns the message and HTTP status
codes are for the complete message -
you can't have partial success or
partial failure for the HTTP message."

Seems a bit spurious. (Mail thread
offered fixes/workarounds).

Some practical difficulties in
generating HTTP 5xx POST response
messages with full control over
Content-Type and Body content.

Handling failure ‘mid-stream’ is a much
more complex issue than correctly
handling HTTP status codes. Abort of
resulting messages; Substitution of
Fault Message..

Streaming: Use of 500 to signal
failures forces an irrevocable choice of
status codes. Use of 200 only, for
success and SOAP failures would aid
streaming implementations.

NotesPro 5xx (for Faults)Pro 2xx (for Faults)

“On the use of HTTP as a substrate for other Protocols”
(Section 8: draft-moore-using-http-01.txt – expired ID dated 16th October 2000, Keith Moore)

A few guidelines are therefore in order:

o A layered application should use appropriate HTTP error codes to
report errors resulting from information in the HTTP request-line
and header fields associated with the request. This request
information is part of the HTTP protocol and errors which are
associated with that information should therefore be reported using
HTTP protocol mechanisms.

o A layered application for which all errors resulting from the
message-body can be classified as either "complete success" or
"complete failure" may use 200 and 500 for those conditions,
respectively. However, the specification for such an application
must define the mechanism which ensures that its successful (200)
responses are not cached by intermediaries, or demonstrate that
such caching will do no harm; and it must be able to operate even
if the message-body of an error (500) response is not transmitted
back to the client intact.

o A layered application may return a 200 response code for both
successfully processed requests and errors resulting from the
request message-body (but not from the request headers). Such an
application must return its error code as part of the response
message body, and the specification for that application protocol
must define the mechanism by which the application ensures that its
responses are not cached by intermediaries. In this case a
response other than 200 should be used only to indicate errors
with, or the status of, the HTTP protocol layer (including the
request headers), or to indicate the inability of the HTTP server
to communicate with the application server.

o A layered application which cannot operate in the presence of
intermediaries or proxies that cache and/or alter error responses,
should not use HTTP as a substrate.

Questions:

Should the HTTP status code reflect the outcome
(success/failure) of an XMLP/SOAP processing?

i.e. should HTTP say "Ok, here's the reply" independently
from whether XMLP/SOAP processing was successful or not?
(Hugo)

Should ALL SOAP Fault messages carried in HTTP POST
responses have the same HTTP status code?

Are the only SOAP messages carried in an HTTP POST response
with a status code of 5xx SOAP Fault messages?

Eric’s Scenario Questions
In the following scenarios (from Eric Jenkins [11]) what HTTP status
codes should be returned.

a) HTTP Server attempts to start SoapProcessor
to handle a Soap message and and the
SoapProcessor crashes.

b) HTTP Server recognizes a Soap message (because

of SOAPAction?) but the URL is non-existent,
i.e., SoapProcessor might have handled it just
fine but the server found some flaw in the header.

c) HTTP Server hands a Soap message to the
SoapProcessor but the message envelope is ill-formed

d) HTTP Server hands a Soap message to a SoapProcessor
requesting a stockprice for a non-existent stock

e) The SoapProcessor is actually not the destination
but is only an intermediary, and the message is

being transported via HTTP, and the SoapProcessor
generates a mustUnderstand Fault.

Possible Resolutions

Use 2xx status codes for ALL XMLP/SOAP messages carried
in HTTP response messages

Use 5xx status code for ALL XMLP/SOAP Fault messages in
HTTP response messages (and 2xx for ALL non-Fault
XMLP/SOAP messages) (status quo I think).

Use 2xx status code for some (TBD) classes of XMLP/SOAP
Fault message and 5xx for some (TBD) classes of
XMLP/SOAP Fault message carried in HTTP responses.

