Discussion Points for W3C XML Schema Working Group

Below is a collection of questions that arose during the crafting of OAGIS 8, one of the more ambitious applications of XML Schema. We submit these with multiple purposes: to gain greater understanding of the current W3C XML Schema Recommendation, to give feedback on the current Rec, and to request that certain of the problems encountered be addressed in future recommendations.

We would be happy to discuss any or all of these, either via email, telephone, or in person.

Mark Feblowitz, XML Architect

Frictionless Commerce Incorporated & Open Applications Group Incorporated

400 Technology Square, 9th Floor

Cambridge, MA 02139

(617) 715-7231

mfeblowitz@frictionless.com
Michael Rowell, Chief Architect

Open Applications Group Incorporated

925 Emerald Bay Drive

Salisbury, NC 28146

(704) 630-6914

mrowell@openapplications.org
Derivation via Restriction

Our most serious problems in developing OAGIS 8 surrounded the use of derivation by restriction of complex types. We found that the replication of content that accompanies derivation via restriction makes such an approach unmanageable on a large scale.

A key manifestation of the issues with derivation by restriction was OAGIS Noun Normalization: maintaining consistency of multiple uses of the same Noun with different content cardinalities. How do you establish different sets of required and optional parts of a thing, given how/where the thing is used? That's the challenge we faced with having different treatments of each Noun, depending on which Verb is applied to it.

For example, Canceling a PurchaseOrder typically only requires a subset of PurchaseOrder information to identify which PurchaseOrders to cancel (any combination of content could be used); but Processing a PurchaseOrder requires the presence of a great deal of the content. How does one specify that any content can be omitted from the PurchaseOrder for a CancelPurchaseOrder BOD
 yet little content can be omitted from the PurchaseOrder for a ProcessPurchaseOrder BOD?

The options boiled down to essentially two: 1) replicate the Noun content for each use of the Noun (either manually or using derivation by restriction) and maintain the separate replicates, or 2) relax the cardinality constraints entirely and rely on something other than Schema validation to enforce the constraints. No matter what combination of Schema features was attempted (and many were), it always came to that.

Given how complex and error-prone replication can be (especially in the face of OAGIS overlay extensibility), OAGIS architects opted for the latter – to relax all minimum occurrence constraints within each Noun and to establish separate BOD Constraints, expressed as XPath expressions in Schematron rules and checked with an XSL processor.

This decision has been met with much consternation from members of our user community, who believe that all such constraints belong as part of the schema and should be validated by a schema-validating parser. Yet none would be pleased with the alternative: manually propagating changes down a cascading set of nearly identical replicated types.

The first questions, then, surround possible improvements to derivation via restriction:

1. Is there an expectation that derivation via restriction of complex types will be altered in future releases of the Schema Rec? Perhaps something like a change from restriction-by-copy to a restriction-by-cancellation, whereby newly added content would not have to be manually propagated to the derived?

2. If not, is it reasonable to expect support from either Schema itself or any IDE for managing the replicates that emerge as the result the current approach to derivation via restriction?

3. Is it necessary to disallow restriction across namespace boundaries? This came as a big shock to us, since our standard relies heavily on layering industry/vertical standards on OAGIS, sometimes requiring derivation by restriction of OAGIS constructs in non-OAGIS namespaces.
4. Is it necessary to force derivation by restriction and derivation by extension to occur in separate steps? Is this a theoretical and/or practical limitation?
Extending Embedded Content Models

One of OAGIS 8's key goals was to provide a vertical extensibility mechanism: to create a widely usable horizontal base, yet support industries, companies, etc., in their real need to define their own vocabularies. It was quite a challenge to find a solution in Schema to support this, but we were able to do so using a combination of namespaces and substitution groups. In this manner, OAGIS users could "plug replace" existing components (refs to global elements) with extended components. Save for the naming issues (discussed below), this turned out to be an excellent approach. It gets fairly complex, though, when the derivations are a mix of extension and restriction.

One important thing to note: without the substitution group mechanism, it would be impossible to achieve this plug-replaceability of components. Not only that, but extension of nested content would be completely impractical. That's because extension of any (deeply) nested element requires a cascading complex of derivations by restriction – from the root (global) element down to the extension site – in order for the extended type to be slotted in. With all of that replication, maintenance of any realistic schema set would extremely tedious, error prone, and quite expensive.

In order to preserve this important capability, we ask that you preserve this use of substitution groups, or our user base will lose an essential capability.

Incorporation of Constraint Language into Schema

1. Is there any expectation that a constraint language – e.g., based on (a subset of) XPath expressions – will be incorporated in Schema (and thus a standard part of Schema-validating parsers)? We're looking for two key types: the obvious co-occurrence constraints and the more immediately needed cardinality constraints.
2. Would it be possible to apply, e.g., cardinality constraints defined in a separate source document? For example, would it be possible to define element structure in one schema and then to merge in cardinality (or other) constraints from other schema files, validating the combination? In our situation, each of our "Noun" elements has several uses, each use with a different cardinality signature. Each use identifies the same structural content models, and differs only in the cardinality of its constituent parts. For example, a CancelPurchaseOrder operation requires only a few parts of PurchaseOrder to be specified, while a Process PurchaseOrder requires that much of the PurchaseOrder content be present. Our goal is to keep PurchaseOrder consistent across all uses (the same content is possible in each use) by having a single structural specification, but to separately stipulate, situation-by-situation, which parts are required or optional.

This differs from the “embedded Schematron rules” approach, in that the embedded constraints offer only one set of constraints for a given schema. In our case (and likely in others), there is need to specify a single, reusable structure and multiple, distinct constraints on that structure.
Inextensibility of Enumerations

Enumeration by restriction of simpleTypes is not a good model for all uses of enumerations, primarily because of the need for extensibility and the inextensibility of simpleTypes.

We devoted a significant amount of effort to overcoming the inextensibility of enumerations. No amount of cleverness allowed us to overcome the fact that enumerations are restrictions on a simpleType, and that no extension was allowed for enumerations. We understand that it is possible to derive other simpleTypes by incorporating a union of two or more simpleTypes, but that only helps in cases where the new type can be used, not in places where the original (smaller) enumeration has already been specified.

A good example is the CurrencyCode. Having a fixed enumeration requires a revision to the schema each time a new code arises. Until the revision is made available to all users, no business can be conducted in that currency, unless some other provision is made.
 This is not practical for a standard like OAGIS, which requires a certain amount of version stability yet cannot tolerate breakage due to inextensibility.

We would like to find a way to extend enumeration sets (or have some equivalent extensible set mechanism) so that new members can be added without modification to the core schema(s), and so that the extended set can be validated. This would require a mechanism that is separate from (and complementary to) the current enumeration mechanism.

What is desired is a set-based mechanism similar to Substitution Groups, whereby the addition of a new set member is immediately accessible by all referencers of that set. We ended up using the Substitution Group mechanism for this purpose, but it is much too heavy weight when all that is desired is a single NMTOKEN or string enumeration.

Semantics of extension of choice groups, all constructs
Extension of a sequence is clear: two conjoined sequences yield the equivalent of a single sequence. A similar semantic is desired for both the "choice" and "all" constructs. For the choice construct there is need for some way to extend the choice group by adding choices. Simply extending a type by adding an additional choice is not equivalent. For the "all" construct, what is needed is a way to extend the all by adding elements that can be included in the any-ordered set of all elements.

Modeling at the Meta-Level

Some significant modeling difficulties arose during the meta-modeling of OAGIS 8.0. Most prominent was the need to specify that "a thing of type X" belongs in a particular place. The primary example was that of the OAGIS "Noun" and "Verb". We define a BusinessObjectDocument as containing a particular "Verb" and a particular "Noun." In the case of the ProcessPurchaseOrder, the Verb is "Process" and the Noun is "PurchaseOrder". We were able to use Substitution Groups to mimic the desired representation, whereby Process is in the substitution group Verb and PurchaseOrder is in the substitution group Noun (with the head elements Verb and Noun being abstract and of the type Verb and Noun, respectively.

Problems arose in limiting ProcessPurchaseOrder to have only a Process and a PurchaseOrder, but no other Verb or Noun. Using the equivalent choice group form and restricting the choices almost worked, but broke the minute we tried to use that approach across namespace boundaries.

Any ideas on how this might be addressed?

Substitution Groups and Particle Derivation

We had a few problems with particle derivation and substitution groups. Following the rule that type derivation via restriction and type derivation via extension must occur in separate derivation steps, we took pains to cleanly separate the steps for correctly deriving the types of substitution group elements from the type of the substitution group head. Both MSXML and Xerces complained about the particle derivation, making it appear that the derivation chains for substitution group elements must be all one kind of derivation – either all by restriction or all by extension.

Is this the case? Or is it merely that this kind of derivation is near the edge of most validators' capabilities and thus not well handled?

The xs:all construct

Is there any way to improve on the limited <xs:all> construct? (Cardinalities and child node depth.) It is a desirable feature, but practically unusable in an architecture like ours, where layered extension is a key feature.

Substitution for Local Elements

OAGIS 8 makes heavy use of substitution groups, for two main purposes: to support our extensibility model, and as an alternative to inextensible enumerations. We have found the substitution group mechanism to be quite useful.

However, there are three issues that arise

1. The fact that substitutions are only supported for global elements is problematic: for OAGIS, it leads to content models with long, arcane globally unique child element names. Our former DTD-based content models were much improved by the transition to local naming: PurchaseOrders could have Ids, Headers and Lines instead of PurchaseOrderIds, PurchaseOrderHeaders and PurchaseOrderLines. But when we decided that Ids, Headers and Lines need to be extensible and thus represented as global (substitutable) elements, we were forced to use longer names or other tricks.

2. The requirement that all substitution group members be global is problematic, because the substitution group members must also be globally unique.

3. The limitation that a particular element must participate in only one substitution group is problematic (related to #2).

What is needed is a substitution mechanism that can be of restricted scope: that local elements can be substituted for, and that the substitution group members can also be treated as local elements (although supporting the former alone would be a great benefit).

Separately, it would be useful if global elements were able to participate in more than one substitution group.

� An OAGIS BOD, or BusinessObjectDocument, is the primary integration message sent between enterprises or applications.

� E.g., an "Other/Other" approach, whereby the value "Other" is unioned with the base set and an "Other" attribute or element is made available to capture the additional, non-validated values.

