Web Services Management Architecture Draft

Contributors

Heather Kreger (kreger@us.ibm.com)

Mark Potts (mark.potts@talkingblocks.com)

Igor Sedukhin (igor.sedukhin@ca.com)

Document History

September 10, 2002 – Heather Kreger, outline, component data

September17, 2002 – Heather Kreger, added description of metrics

September 25, 2002 – Igor Sedukhin, concepts

September 30, 2002 – Mark Potts: Amendments and additions - Classification of Service, and Role based Management Perspectives.

October 2, 2002 – Igor Sedukhin: Added Service Description components drill-down.

October 3, 2002 – Mark Potts: Amendments and corrections (e.g. Requestor-Service relationship)

October 3, 2002 – Igor Sedukhin: Moved all the stuff that needs discussions to the Issues Appendix. Goal: get MTF to agree on the basic management components and concepts and move on.

October 4, 2002 – Mark Potts: Added issues on Intermediary as a role and its relationship to WSEE.

October 10, 2002 – Heather Kreger: merged concepts and data documents. Added new use cases.

October 11, 2002 – Igor Sedukhin: [fulfilling my Action Item] provided better explanation of the basic concept (roles, activities, etc.); provided better explanation of the EE role; updated UML diagram with basic Mgmt components; provided explanation for that UML diagram. Also, added numbering & TOC; arranged sections.

October 14, 2002 – Heather Kreger: rearrange and filled in conceptual use cases

Table of Contents

41.
Introduction

51.1.
Goals

51.2.
Requirements

61.3.
Scope

6Data

7Access

7Discovery

7Not in Scope

72.
Concepts and Abstract Model

102.1.
Execution Environment role

11Hosted Service role

112.2.
Conceptual Use Cases

11Discovery of Manageable Service

13Management system Interaction wth Managable Service

14Managing a WSA Component

153.
Managed Components

153.1.
Relationships and Definitions

17Hosted Service Component

17Interactions Components

18Discovery Agency

193.2.
Information, Operations, Events

19Web Service Execution Environment (WSEE)

19Identification

19Configuration

20Metrics

20Operations

21Events

21Access

21Discovery

21Web Service within the Execution Environment

22Identification

22Configuration

22Metrics

24Operations

24Events

24Access

24Discovery

24Web Service

25Identification

25Configuration

25Metrics

25Operations

25Events

25Access

25Discovery

25Discovery AgenciesDiscovery Agency

25Identification

26Configuration

26Metrics

26Operations

26Events

27Access

27Discovery

27UDDI

27Identification

27Configuration

27Metrics

28Operations

28Events

29Access

29Discovery

29WSIL

29Identification

29Configuration

29Metrics

30Operations

30Events

30security access failures

30Access

30Discovery

30Web Services Requestor

30Intermediaries

304.
Appendix: Oustanding Issues

31I6. Is containment support required

314.1.
Intermediary and Proxy Issues:

31I5. Is Intermediary support required

31I11. Proxy components

31I12. Proxy Interaction components

32I13. Intermediary and other transcendental roles of an Execution Environment

34I14. Management Perspective (A Guideline or a Use Case)

34Provider’s Perspective

35Requester Perspective

365.
Resolved Issues

36I1. Are Service identifiers tied to wsdl uri

36I2. Should wsdl uri and access uri be in service configuration

36I3. Managing service types vs service instances

36I4. Can we define a XML schema for the UML model for the data

36I7. Service Description components

37I8. Discovery Mechanism components

37I9. Do we need “Hosted” Service?

37I10. Interaction components

376.
Appendix: Glossary

377.
Appendix: Additional Guidelines and Use Cases

1. Introduction

The W3C Web Services Architecture Working Group has been formed to document the Web Services Architecture. Enough members of the Working Group felt that it was very important to define the manageability characteristics of the architecture along side the architecture itself. To that end, the following Goals, Requirements, and Critical Success factors were added to the Web Services Architecture Requirements document. This paper is a draft of the architectural satisfaction of those requirements. The contents of this document should be folded into the main Web Services Architecture draft. This draft is intended to be a running working draft for the Management Task Force and is not intended to ‘stand alone’ and independent of the Web Services Architecture document.

1.1. Goals

· D-AG007 Management and Provisioning
The standard reference architecture for Web Services must provide for a manageable, accountable and organized environment for Web Services operations..

Critical success factors and requirements for this goal:

· D-AC018 The Web Services Architecture must enable the management and provisioning of Web Services

1.2. Requirements

D-AC018

The Web Services Architecture must enable the management and provisioning of Web Services

· AC018.1 Ensure that implementations of the Web Services Architecture are manageable.

· AR018.1.1 Define a base set of standard metrics for architectural components and their interactions accompanied by guidelines for measurement.

· AR018.1.2 Define a base set of standard management operations for Web Services Architecture implementations. Management operations includes, but is not limited to, support for configuration control and lifecycle control.

· AR018.1.3 Define a base set of management events to be issued by the Web Services Architecture implementation.

· AR018.1.4 Define a standard methodology for accessing management capabilities from the Web Services Architecture implementation.

· AC018.2 Ensure that implementations of the Web Service instances are manageable.

· AR018.2.1 Define how a web service should expose web service specific metrics, configuration, operations, and events.

· AR018.2.2 Support the discovery of web service management capabilities.

· AR018.2.3 Define a standard methodology for accessing management capabilities of a Web Service through the Web Services Architecture implementation.

· AC018.3 Ensure that at least the following types of management aspects are supported: Resource Accounting, Usage Auditing and Tracking, Performance Monitoring, Availability, Configuration, Control, Security Auditing and Administration, and Service Level Agreements.

1.3. Scope

As a result of these Goals and Requirments, we have identified the scope of this work to be defining the architecture necessary to make a Web service architecture implementation and a Web service implementation manageable. In order for the Web service architecture to be manageable, each of the components of the architeture must be manageable. At this time the components to be managed are:

· Web Service Execution Environment

· Web Service

· Discovery Agency

Additional managable components may emerge as the architecture definition progresses, including Intermediary and Service proxy.

This architecture must define the minimum, basic information, operations, events, and behaviors that a Web services architecture component must implement in order to be called a ‘manageable Web services architecture component’. Not all components must be manageable. Not all Web services architecture implementations must be manageable. Support of this manageable Web services architecture by implementations of the Web services architeture is higly recommended, but not required.

The following management information categories must be defined for each manageable component:

Data

· Identification – read only data that uniquely identifies the component. This data may include information that is not required for unique identification as well.

· Configuration – read only and read/writeable data that represents the configuration of the data component

· Metrics – a value that captures a state at a point in time. Generally these values are numeric, but may be strings as well

· Operations – methods that control the component. Operations are distinct from configuration changes in that configuration changes are generally persistent over interations/instances of the component.

· Events – one way messages from the component that indicate a problem, a lifecycle state change, or a state change.

In addition to defining the information to be exposed by a manageable component, this architecture must define a standard means to access this information. Access must be defined for the following management data sets:

Access
· To management information from the Web Service Execution Environment

· To management information from the Web Service

· To management information from the Discovery Agency

· To management information from the Web Service requester

Finally, it must be possible for the manageability information and access to that information to be discovered. Hence we need to define the following discovery standards:

Discovery

· Of managable components

· Of management information

Not in Scope

Management Systems – This architecture will not define what applications should be defined to manage the Web services. Nor will it define how they should be implemented. However, this specification may mention such applications as part of a scenario or use case. This architecture will define management information to be used by management systems to facilitate management of Web services or Web service architectures. We will not define the management systems or their facililities. We will not define use of the management information by management systems.

Service distribution/installation/deployment – This architecture will not define how Web service component implementations are distributed, installed or deployed into any system or set of systems. This includes this Web service execution environment, Web service, Web service description, and Web service requester.

Access rights and control – This architecture will not define the policies (access control, trust, etc.) that govern management information flow.
2. Concepts and Abstract Model

Manageability includes the information, that managed resources, expose to management applications. Manageability information includes configuration, metrics, operations, and events for the resource. It also includes the means by which manageability is exposed to management applications. Management includes the applications that use the information exposed by the resources to be managed. For example, Management systems may use this information to determine and display topologies, status, events. Mangement applications may also use this information to monitor and compare with policies for alterting and automated responses. This architecture defines the manageability for the components of the Web services architecture.

In the Web services architeture, there are roles: Requester, Provider and Discovery Agencies and activities: Interact, Find and Publish.

Role is “the thing” that performs activities. An activity is an exchange of information. Actual semantics of an activity is implemented by a component that takes on a role. Roles can collapse in one component, in which case that component implements and performs all activities of all associated roles. An implementing component of a role is not directly part of the WSA. Therefore particular implementations of each role are not prescribed. An activity realizes semantics of two roles in relation to each other.
The following diagram simply shows that a new role ‘Manager’ which can manage any of the roles and interactions in the Web services architecture. For this document, ‘component’ is an implementation of one of these roles – Requester, Provider, Service, or Discovery Agency. In order for a Manager to be able to manage these components of the Web services architecture, it needs to be able to ‘discover’ the manageable components and access the management information of the component. This architecture will define how Managers can access management information and the basic set of management information supported by each role. The definition of the ‘Manager’ role beyond how it interacts with the roles of the Web services architeture is outside the scope of this architecture document.

 [image: image1.png]Manager Role

WS Management Architecture (WSMA) does not specify how management concept should to be implemented and does not prescribe any specific management systems. WSMA defines

· Extensible Management Information Schema that directly correlates with the WS Architecture roles

· Base set of Management Operations/Events (Manageability) that WS Architecture roles need to provide

· Access to Management Information/Operations/Events (Manageability)

· Discovery of Access to Management Information

Essentially, WS MA defines an extensible information set and information flow that enable various interested parties to realize management of implementations of Web Services and Web Services Architectures.

2.1. Execution Environment role

[image: image2.png]Requestor

Client
Environment Environment

Manager

WSA defines that a Requestor discovers and directly interact with a Service that provides necessary functional (e.g. submit purchase order) and operational (e.g. SOAP over HTTP) semantics.

In most cases, the Service will actually be ”hosted” in an environment specifically supporting Web services. These environments provide execution facilities such as message listening, parsing, security, and dispatching to the service along with deployment, configuration and management. Some environments also provide scalability via pooling, clustering, and workload balancing. Certainly, services don’t have to execute in such an environment and may do all their own listening, parsing, and dispatching. In this case the environment and service roles are collapsed into the service. Because services are usually running in such an environment, it is necessary to manage the “Execution Environment” for availability and performance as well. The execution environment of a Web service may also be leveraged to provide management information on behalf of a service. For management purposes an Execution Environment is introduced that hosts (contains, runs) the Service. An Execution Environment is aware of the services it hosts, but services do not directly have knowledge of their execution environment (see hosted service below). Requestor is also hosted in its Execution Environment.

Since the Execution Environment is a role, an Execution Environment of one Requestor may be the same as the Execution Environment of another Service. It may also be that a Requestor and its Execution Environment are one and the same.

Hosted Service role

[image: image3.png]“Hosted"
Service

Service
Environment

A basic Web service is not aware of its execution environment. However, some Web services may be and these are called ‘Hosted Services’. A hosted service is aware of the service it represents and the execution environment it runs in. It exposes management information that is unique to a service that runs in an execution environment. In fact, most of the management data provided by hosted services may actually be tracked and provided by the execution environment, like an interaction history. This same concept applies to Requester roles and Client artifacts:

[image: image4.png]“Hosted"
Client

Client
Environment

2.2. Conceptual Use Cases

Discovery of Manageable Service

[image: image5.png]Management pattern
Manageable Service

Find Pubiin Publin

In this scenario we take the Web services architectural triangle, we can decorate it with the artifacts and roles for management activities. In this example we add the following artifacts

1. An execution environment that the service runs in. The execution environment is part of the provider

2. A management portType for the execution environment which it advertises (grey oval).

3. Management portTypes for the Discovery Agencies which they advertise (yellow oval).

4. A management portType for the service which the service provider advertises (green oval)

5. A business portType and for the service which the service provider advertises

6. A discovery agency for management portTypes. The management portType is advertised with a different discovery agency than the busines portType. This is for illustration purposes only and certainly the both portTypes could be available from the same discovery agency.

7. A business service requester (i.e. stockquote requester) which has access to the business operations.

8. A separate management service requester which has access to the management operations. Certainly, these requesters could be one and the same.

In this scenario, a manageable service is advertised by the service provider in a management discovery agency. The management service requester discovers the existence and interface of a manageable Web service. It then interacts with the management portType to access the management data of the service.

This same scenario works for management requesters who want to interact with the management PortTypes of the discovery agencies and execution environment. The management service requester can discover the management portType for the discovery agencies, execution environment, and service and interace with any of these component just like the example of their interaction with a service.

Management system Interaction wth Managable Service

[image: image6.jpg]Management Use case

In this use case, the management system or mangement client discovers a Web service it wants to manage, perhaps using the means just discussed. The management system uses their own management requestor to use the management protocol, which is to be recommended by this architecture. The management protocol invokes the management interface advertised by the Web service as its management portType. This management architecture will define standard management interfaces for the Web service architecture components. Components may also advertise and support their own extended management interfaces. The information available through the interface is stored in a vendor specific model in the management system and used by vendor specific management systems. This management architecture will not define the management system’s models or applications.

[image: image7.jpg]Management Use case

Managing a WSA Component

[image: image8.png]‘Management

Maragement
Protocol

£
3

Architecture
Component

[Heather: I am still not comfortable with this example and the role of the model in

it…]

The above diagram informally describes a conceptual use case of managing a WS Architecture component that implements one of the roles (e.g. a Service, Client, Discovery Agency, Execution Environment, etc.). Note that the management model and management components on the right are outside the scope of this architecture. This is just one way that support for this architecture could be implemented using a model driven web services architecture implementation.

1. Management Client discovers a component using standard discovery mechanism (e.g. looking up a Service in a Discovery Agency or scan the network for Web Servers)

2. A component has Management Interfaces (portType) that allow interactions via a Management Protocol. For example, the Service may include definitions of those interfaces and protocol requirements in its description as a portType and binding.

3. Management Client uses Management Protocol to interact with the Management Interfaces. Management Protocol delivers management information, carries management operation interactions and conveys management events.

4. Management Interfaces may deliver and operate a Management Model (Schema & Objects). This architecture will not define a Web service component side management model.

5. A Management Model could contain Management Components that represent WS Architecture components and relate them to other Management Components.

6. A Management Client could discover Management Component that represents the component it is interested in. It then navigates to other Management Components following their relationships (e.g. containment, dependency, etc.). For example, if it finds a Web services execution environment it may be able to find all the services running with in it and ask each one for its status.

7. Then the Management Client may operate on or configure a Management Component. That directly affects (configure, control) corresponding WS Architecture component.

8. Finally, the WS Architecture component generates management events that are delivered via Management Component, Management Interfaces and Management Protocol directly to the Management Client. Events conform to the Management Component information schema.

3. Managed Components

3.1. Relationships and Definitions

The diagram below formally identifies basic set of WS Management components and captures the relationships between them. More diagrams follow to define other, supplementary components and relate them to the basic components.

In other words, these are the components that we need to manage and these are the relationships that we need to reflect in the management information schema.

Management components depicted below represent corresponding WSA roles (e.g. Service). WSA roles reflected here are therefore manageable. Relationships defined in the diagram are solely for management purposes.

[image: image9.png]+discoversFrom [Dicovery Agencies | *advertizedBy
—
. * | +implements Hists
Requestor +uses Service Provider
1 1
* | +has « | +has
Client Service

In the above UML diagram management components are represented by classes.

Relationships between management components are represented by associations (and cases of associations such as an aggregation). Associations are drawn between classes. Therefore associations between instances follow the associations between classes, but do not necessarily coincide on the same instance even if they coincide on the class. For example a Requestor instance may be associated with a different instance of an Execution Environment than an instance of a Service (for clarity: both may be associated to the same Execution Environment instance as well).

Necessary clarifications for the UML diagram:

· Discovery Agency may be implemented by a set of services (e.g. a replicated UDDI registry implemented at several locations) (implements). A Service may implement one or more Registries, but the Service is not aware of that.

· A Service may advertise itself using several Discovery Agencies (advertizedBy).

· A Discovery Agency keeps an inventory of advertised Services (lists).

· A Requestor may use several Discovery Agencies to locate Providers and Services and a Discovery Agency may be exercised by many Requestors (discoversFrom).

· Providers and Requestors may be contained in the Execution Environment (container aggregation). There may be many of both in a container. The aggregation is optional (i.e. not a composition, cardinality reflects that). A Service Environment may be aware of the contained (aggregated) Services and clients (services and requestors aggregation). Contained services and clients are not aware of the execution environment.

· Requestors are aware of and use the Providers (uses). It is a many-to-many relationship. Providers are not aware of potential Requesters.

Hosted Service Component

[Igor Sedukhin: to keep consistency and reasonable symmetry of the conceptual model, optional aggregation of Services & Requestors was kept in place, and a Hosted Service indicates an implicit dependency that it “knows more about” Execution Environment.]

[Heather: Igor, the arrow from SE to Service should be one way. The arrow from EE to hosted service should be two ways. And why is it dotted?]

[image: image10.png]Service Environment

1| +hostedin

“+contains.

Service

Hosted Service

The above diagram introduces a Hosted Service that is a kind of Service that is aware that it is running in an Execution Environment and is aware of the Execution Environment.

Again, the same concepts apply to the Requester and the Client:

[image: image11.png]Ciient Environment

1| +hostedin

“+contains.

Client

Hosted Client

Interactions Components

Interactions and histories of interactions can be very valuable for problem determination. This management interface gives a manager requester standardized access to the interaction cache or history through the HostedService which may be maintained by the execution environment. A service is not expected to log or access these interactions. A HostedService is not required to support persisting or caching interactions. Even if it does keep interactions, it is not required to allow a manager access to it. However, if a HostedService does want to allow a manager access to a set of interactions, it is strongly recommended that it be implemented according to this architecture.

[image: image12.png]Client 1

1 Service

+client

+service

Message | +sequence

L o

1.2 1

finteraction]

+history

Hosted Service

· Interaction is a navigable association between a Requestor and a Service. One or two messages form the Interaction sequence. Sequence is ordered.

· Hosted Service may keep and make available a history of Interactions that the Service carried out.

Architecture To Be Determined.

Discovery Agency

Discovery Agencies can be implemented using a variety of mechanisms. However, there should be a set of basic management information that is common to all Discovery Agencies regardless of if the are centralized, distributed, push-populated, crawler populated, cached, etc. This part of the architecture will try to define the basic management information for all discovery agencies to optionally support as well as basic management data for a few of the existing, common agencies like UDDI and WS-IL.

[image: image13.png][Discovery Agencies

[Centralized Registry|

upol

[Distributed Peers|

WS-IL

0GSA

· A Discovery Agency may be centralized or distributed.

· A concrete implementation of a Discovery Agency of a Centralized registry type is UDDI (replicated or delegated).

· Concrete implementations of a Discovery agency of a distributed Registries type (Discovery Mechanisms, rather) are WS-Inspection (WS-IL) and Open Grid Services Architecture (OGSA).

3.2. Information, Operations, Events

Note to reviewer, concensus has not been developed around the information in this section

For each role this section defines the basic management data, access, and discovery architecture and details for each of the manageable components. Management data includes: identification, configuration, metrics, operations, and events.

Web Service Execution Environment (WSEE)

Identification

Identification information:

· WSEE identifier – a uri identifying the instance of the execution environment, may not be a location as well

· WSEE name – human readable name for the instance WSEE (i.e. humanResourcesServices.

· product name - the name of the product (or suite of products) that provide the execution environment support. Hmm… what do we do about many products
· version – version of the product

· install date – date the product software was installed

· maintenance level – patch or maint level of the product

· WSEE description – a description of the purpose or domain of this WSEE

Configuration

Configuration information

· Admin URL – (optional) URL to access that supports administering the WSEE

· Management URL – URL to access that supports a w3c recommended management protocol to access the data defined in this specification.

· Management WSDL URL – the url for the management service’s WSDL. If we have this, do we need management url since it’s the location in the port definition and may vary for read/only vs reconfigure ports.
· configuration files (URI) – set of URIs that point to a set of files that represent the configuration of the WSEE. Seems like there should be a way to normalize this, or at least require it be XML files and schema or dtd URLs.

· Handler chain –. (optional) A representation of the handlers being used by the WSEE. There are two WSEE scope handler chains: global (invoked for every message in and out of WSEE) and default (default chain for services that can be overridden on a service by service basis.

· Security settings – (optional) security settings for the WSEE. This needs more work, but should support integration and exposure of ws-security support.
(Removed: WSDL URL, put it back it)

Metrics

Metrics to help track usage of the service and execution environment. These metrics are tracked since the WSEE initialized. It has been suggested to add timestamp pairs for each metric to indicate what time period this count represents. This would help in the case that ‘resetMetrics’ was invoked.

· Number of Requests – total number of web services requests for all services received by WSEE

· Number of Success Responses – total number of success responses sent by WSEE (SuccessResp + FailResp = requests) We need to define ‘successful’
· Number of Failure Responses – total number of failure responses sent by WSEE. We need to define ‘failure’ response
· Average Response Time of Responses – the average response time for all responses for all services handled by WSEE. The timestamp should be taken as soon as it enters WSEE and again just as it leaves WSEE. It will be the aggregate of the time spent in WSEE environment, any handlers, and the service itself.

· Average Response Time of Failure Responses - the average response time for all failure responses for all services handled by WSEE. The timestamp should be taken as soon as it enters WSEE and again just as it leaves WSEE. It will be the aggregate of the time spent in WSEE environment, any handlers, and the service itself.

· Average Response Time of Successful Responses - the average response time for all successful responses for all services handled by WSEE. The timestamp should be taken as soon as it enters WSEE and again just as it leaves WSEE. It will be the aggregate of the time spent in WSEE environment, any handlers, and the service itself.

Operations

Operations to control service lifecycle, deploy, remove, start, and stop are part of the execution environment’s operations. They could be moved to the service specific MBeans, but it’s a 50-50 choice so for these examples, they are part of the execution environment MBean. – should it be optional on the container, and required on the service. Should it be in both places.

· EnableService – begin taking requests on a service. Is idempotent

· DisableService – stop taking requests on a service. Is idempotent

· DeployService – initiate the deployment of a service package (vendor specific) into a WSEE, if this is supported it should not require operator intervention during deployment. This command should get it ready to be enabled.

· UndeployService – initiate undeployment of a service from a WSEE. If this is supported it should not require operator intervention during deployment.

· ConfigureService – change the current configuration of a service. May or may not take effect during the current instance. Do we support file replacement? How could we do this ‘generically’?
· Test – test operational ability of WSEE (smart ping to WSEE)

· TestService – test operational ability of a service (smart ping to service)

· getServiceStatus

Events

The notifications should be sent by the execution environment for each service, including:

· service not deployed – tried to enable or request to a service that is not depoyed in wsee

· service unavailable – tried to request on a service that is deployed an dis not enabled

· service failed – request to the service failed

· service deployed – lifecycle event that a service has been deployed

· service access denied – security denial

· service invocation failed – a request to the service has failed within the service implementation (not via the wsee)

· service not found –the service is deployed and enabled but not invocable

· service timed out – request to the service timed out Where do we get the timeout value?
· service deploy failed – deployment of the service failed

· service enable failed – enabling the service failed

Access

To management data using web services

Discovery

Of WSEE – advertise WSDL in a Discovery Agency (push or crawl)? Advertise WSDL in a WSIL document that only has management interfaces in it and is pointed to by a system WSIL.

Of management data about WSEE – process WSDL advertised for WSEE. Slice portTypes so its possible to test on level of capability by portType supported.

Web Service within the Execution Environment

The runtime should keep the following information for each service:

Identification

Identification information:

· service identifier – uri – a unique identifier for the service instance or is it type?
· service name – readable name for the service, Does it need to match the service name or the port name in the wsdl?
· service description – readable description of the purpose of the service, this could be a catcher for taxonomy

· service version – the version of the service implementation

· wsdl url – the URL for the wsdl document for the service + servicename + portname I find myself getting trapped by the term service really meaning a port.. and not a ‘set of ports’. What is the implication on our work for multiple port services? Do we need a WSDL version?
· Availability time – what time the service was enabled.
Configuration

Configuration information

· ws access URL – this would be the same is the URL in the location element in the port referring to this service. Can a service have several of these?

· Ws WSDL description URLs + service name + port name

· configuration files – optional – filename that contains any configuration for this service. It should be an XML file do we
· Admin URL – (optional) URL to access that supports administering this service

· Management URL – URL to access that supports a w3c recommended management protocol to access the data defined in this specification for this service

· Management WSDL URL – the url for the management url’s WSDL. If we have this, do we need management url since it’s the location in the port definition and may vary for read/only vs reconfigure ports.
· Handler chain – optional – handler chain for THIS instance of the service or is it this class/type of service?
· Security settings – optional This needs more thought and exploration with ws-security
Metrics

Metrics to help track usage of the service and execution environment. This was intended to be counts for the life of the service.. (since it was enabled, not since instantiated) or WSEE. Should we keep timestamps for each metric to scope the counts/averages?

· Number of Requests – total number of web services requests for this service

· Number of Success Responses – total number of success responses sent by this service We need to define ‘successful’
· Number of Failure Responses – total number of failure responses sent by this service . We need to define ‘failure’ response
· Average Response Time of Responses – the average response time for all responses from this service. The timestamp should be taken as soon as it enters the service and again just as it responds. It will be the aggregate of the time spent in the service itself.

· Average Response Time of Failure Responses - the average response time for all failure responses this service. The timestamp should be taken as soon as it enters the service and again just as it sends the response. It will be the aggregate of the time spent in the service itself.

· Average Response Time of Successful Responses - the average response time for all successful responses for this service. The timestamp should be taken as soon as it enters the service and again just as it sends the response. It will be the aggregate of the time spent in the service itself.

· Total Elapsed Execution Time – the total ms spent processing in the web service for all requests

· Number of Invocations Per Method – the number of requests for each operation/method supported by the service

· Number of Failures Per Method - the number of failures returned by the service for each operation/method supported by the service

· Average Response Time of Responses per Method - the average response time for all responses for each method. The timestamp should be taken as soon as it enters the method and again just as it exits the method. It will be the aggregate of the time spent in each method.

· Average Response Time of Failure Responses per Method - the average response time for all failure responses for each method. The timestamp should be taken as soon as it enters the method and again just as it exits the method. It will be the aggregate of the time spent in each method.

· Average Response Time of Successful Responses per Method - the average response time for all successful responses for each method. The timestamp should be taken as soon as it enters the method and again just as it exits the method. It will be the aggregate of the time spent in each method.

· Total Elapsed Execution Time per Method – the total ms spent processing this method in the web service for all invocations

· Number of Invocations per Attachment (?) – number of times an attachment is sent to the web service

· Number of Invocations per Message (?) – number of times a message element is sent to the web service (for doc styles counting?)

Operations

Operations to control service lifecycle, deploy, remove, start, and stop are part of the execution environment’s operations. They could be moved to the service specific MBeans, but it’s a 50-50 choice so for these examples, they are part of the execution environment MBean.

· Deploy – have service start its deployment

· Undeploy – have service start its undeployment

· Enable – allow this service to be invoked to respond to a request

· Disable – stop this service from being invoked to respond to a request

Events

The notifications should be sent by the execution environment for each service, including:

· service not deployed – tried to enable or request to a service that is not depoyed in wsee

· service unavailable – tried to request on a service that is deployed an dis not enabled

· service failed – request to the service failed

· service deployed – lifecycle event that a service has been deployed

service access denied – security denial

· service invocation failed – a request to the service has failed within the service implementation (not via the wsee)

· service not found –the service is deployed and enabled but not invocable

· service timed out – request to the service timed out Where do we get the timeout value?
· service deploy failed – deployment of the service failed

· service enable failed – enabling the service failed

Access

Management protocol… something simple like getAttributes/setAttributes/invoke… tbd by oasis.

Discovery

Of web service – advertise WSDL in a Discovery Agency (push or crawl)? Advertise WSDL in a WSIL document that only has management interfaces in it and is pointed to by a system WSIL.

Of management data about Web service– process WSDL advertised for WSEE. Slice portTypes so its possible to test on level of capability by portType supported.

Web Service

Most of this will be service specific.

Hao owns a drill down

Most of these values are actually already represented in the above web service in the wsee

Identification

· Name – name of service (as above)

· Uri - identifier

· Wsdl – wsdl url

Configuration

· handler chain (as above)

· parent execution environment (info only, not settable during lifecycle)

Metrics

· Availability time

· Invocations per method

· Failures per method

Operations

Events

· Up

· Stopping

· Stopped

· Failing

· Failed

Access

Discovery
Discovery AgenciesDiscovery Agency

What are the common management characteristics of all entities playing the ‘Discovery Agency’ role?

The service Discovery Agency should also be enabled to be managed for reconfiguration, failure scenarios and events, performance monitoring response time, throughput, and number of entries. If the Discovery Agency is only accessed as a Web Service via a Web Service Runtime, then some of the events and monitoring metrics may be able to be provided by the same Web Service Runtime instrumentation described above.

Identification

identification information:

· product name

· version

· install date

· maintenance level

· instance name

· URL

Configuration

configuration information

Trace on/off/ level of detail

Metrics

metrics that will help operators gauge its responsiveness and usage (demarked with where the data must come from):

· the rate of accesses

· number of invocation by operation type:

· number of gets

· number of finds

· number of publishes of services

· number of publishes of relationships between services

· average response time per operation

· average response time for a get

· average response time for a find

· average response time for a publish

· high and low watermarks per operation

· high and low watermarks for get response times - w/ time of occurrence

· high and low watermarks for finds response times

· high and low watermarks for publish response times

· percentage of request failure responses

· summary metrics already in Discovery Agency

· # of businesses

· # of services

· # of relationships

Operations

operations to:

· start the Discovery Agency

· stop the Discovery Agency

· smart Ping

· backup operation to save the current Discovery Agency data to a backup database or file

· trace on/off/level

· Reset the metrics: averages, totals, watermarks

Events

notifications to warn operators that the Discovery Agency is:

· degraded

· running out of space

· has failed

· security access failures

Access

Discovery

UDDI

This is an example of how this data may be realized in a UDDI registry.

Identification

identification information:

· product name

· version

· install date

· maintenance level

· instance name for uddi instance

· URL

Configuration

configuration information (a mammoth amount if pull in the config XML file for configuring the servlets that make up the UDDI server. The product has fewer config elements, but its still large):

· NO-IP address (handled by runtime/appserver/webserver, not UDDI)

· NO-URL (can only be changed by recycling the servlet in accordance) Runtime re-configurable (most not)

· Trace on/off/ level of detail

Metrics

metrics that will help operators gauge its responsiveness and usage (demarked with where the data must come from):

· the rate of accesses – wsee

· number of gets – uddi – operation is part soap msg and not in header so can’t be counted by was AND there can be multiple operations in a soap message

· number of finds – uddi

· number of publishes of entity data – uddi

· number of publishes of relationship data – uddi

· number of invokes per operation - uddi

· average response time for a get – uddi (after parsing and obj creation)

· average response time for a find – uddi

· average response time for a publish – uddi

· average response time per operation - uddi

· high and low watermarks for get response times - w/ time of occurrence

· high and low watermarks for finds response times

· high and low watermarks for publish response times

· percentage of request failure responses – capture by was, not uddi, if fails then not able to send message

· connection pools – how many defined, how many used

· summary metrics already in UDDI on per operator basis

· # of businesses

· # of services

· # of tmodels

· # of relationships

Operations

operations to:

· start the registry – part of wsee

· stop the registry – part of wsee

· smart Ping – outside uddi (used by network dispatcher UDDI custom adviser), part of mgt app – uddi req inquiries – 2 or 3 on data know will be there

· backup operation to save the current registry data to a backup database or file

· trace on/off/level – from uddi

· Replication – send notification to other uddi nodes in the ring, ping other nodes to Be sure can do replication, start repl, set replication period, set replication nodes, Cancel replication in progress (may not be necessary, will time out)

· Reset the metrics: averages, totals, watermarks

Admin: V2

Users-Find a user/ Find data user owns, Manage a users authority to publish, enable,

disable, set, aliasToUser, - UBR only, not product

Email user/all users – UBR, not product

Notify operators and users that the registry is unavailable

V3 will be more config and policy

Events

notifications to warn operators that the registry is:

· degraded – outside uddi

· running out of space – outside uddi

· failure for percentage of messages – from uddi server

· overloaded runtime – from wsee (turning away requests)

· about to fail – from uddi

· resource availability failure (like connection pools to database problem)

· has failed – from uddi

· resource failure: connection pools gone, connection failure

· security access failures –

· HTTP handling only from container

· from uddi server: decrypt, authentication, signature verification failures, authorization of users (UBR checks if user is registered)

Access

Discovery

WSIL

Here is an example of how e might map the registry data to a WSIL registry implementation. One of the ways to maintain a WSIL document is through a service that manages the WSIL file. This service would be responsible for updating the file and generating/maintaining a current version of it on demand. It is not required to have a WSIL service with the WSIL file. The WSIL file can exist alone and be edited directly or updated with simple api’s (like those from the WSTK) on demand. These management attributes may only be relevant to WSIL document manager services.

Identification

identification information for service to manage wsil file :

· product name

· version

· install date

· maintenance level

· instance name

· URL of WSIL file

Configuration

configuration information

Trace on/off/ level of detail

Metrics

metrics that will help operators gauge its responsiveness and usage (demarked with where the data must come from):

· the rate of accesses

· number of invocation by operation type:

· number of gets

· number of publishes of services

· number of publishes of relationships between services

· average response time per operation

· average response time for a get

· average response time for a publish

· high and low watermarks per operation

· high and low watermarks for get response times - w/ time of occurrence

· high and low watermarks for finds response times

· high and low watermarks for publish response times

· percentage of request failure responses

· summary metrics already in registry

· # of services

Operations

operations to:

· start the service to manage wsil file

· stop the service to manage wsil file

· smart Ping to service to manage wsil file

· backup operation to save the current wsil file to a backup database or file

· trace on/off/level for service to manage wsil file

· Reset the metrics: averages, totals, watermarks

Events

notifications to warn operators that the service to manage wsil file is:

· degraded

· running out of space

· has failed

security access failures

Access

Discovery

Web Services Requestor

Intermediaries

Are there several types from the SOAP 1.2 specification

4. Appendix: Oustanding Issues

I6. Is containment support required

Resolution: WSEE contains WSs – is I9. Another meaning is Web services contains Web services - Relationships/Dependency management. Mark will provide a description of what this is and how me might manage it.
4.1. Intermediary and Proxy Issues:

I5. Is Intermediary support required

Resolution:A very common role. May be a new role or it’s a combo role. Could be that it has some additional/unique data because it will need to expose requester/provider/EE superset.

I11. Proxy components

Resolution: All Proxy issues will be left open until the W3c WS Arch WG gets farther along with intermediaries and service proxies.

This issue was raised by Mark Potts and Igor Sedukhin.

Diagrams & Text by Mark Potts and Igor Sedukhin.

[image: image14.png][Execution Environment]

+contained ~ +services

+represents

Hosted

Service

[Service Instance]

Proxy Service

· One Proxy Service may represent one or more Services. Multiple Proxy Services may represent one (same) Service.

· Proxy Service’s description conforms to the same Service Types that the represented services conform to (note that there could be many!).

· Service Instance is the service that does not explicitly represent any other service in any way and is therefore “the end of the chain”.

I12. Proxy Interaction components

Resolution: All Proxy issues will be left open until the W3c WS Arch WG gets farther along with intermediaries and service proxies.

This issue was raised by Igor Sedukhin. Relates to 3.5 and 3.4.

Diagrams & Text by Igor Sedukhin.

[image: image15.png]Service

i

[Hosted Service]

Proxy Service

Requestor 1 1
T
+requestor ! +service
10
|
Wessage | [+sequence _ fnteraction| *history
"2 gnt i}
1 __ﬂ_*e
1 1
— —
[Correlated Interaction| *activity
Relay Point | +relay .

“+controller

· A Proxy Service carries out Correlated Interactions. It may record its activity.

· A Proxy Service is itself a Service that is exposed to external Requestors.

· A Proxy Service uses a Relay Point (which is a flavor of a Requestor) to interact with the represented Service. A Proxy Service is aware of the relay and a Relay Point is aware of its controller.

· Correlated Interaction encapsulates right Interaction (i.e. external Request to the Proxy Service) and left Interaction (i.e. Rely Point to the represented Service).

I13. Intermediary and other transcendental roles of an Execution Environment

Resolution: All Proxy issues will be left open until the W3c WS Arch WG gets farther along with intermediaries and service proxies.

This issue was raised by Mark Potts and Igor Sedukhin.

Diagrams & Text by Mark Potts and Igor Sedukhin.

Mark’s view:
Here is a diagram that elaborates on the transcendental role of an Intermediary.

[image: image16.jpg]

Intermediaries exist to provide value-adds to the Services they represent such as metering, monitoring, billing, etc.

· An Intermediary is a Role that “has” an Execution Environment

· A Provider is a Role that “has” an Execution Environment

A Requester is a Role that “has” an Execution Environment

· These roles can collapse in one Execution Environment, in which case roles are indifferentiable from one another at the Execution Environment level.

The diagram above shows the relationship in a way to aid explaining this conceptually but I am not sure the conceptual explanation maps directly to a model view. I believe an intermediary is a type of Provider. If you look at specific interactions with a Service being provided, they are acting as one or the other (Intermediary if the interaction resolves to a Proxy or a Provider if the interactions resolves to an Instance). So an Intermediary is a role just like Requester and Provider and in fact, it is a combination of the Provider and Requester roles.

Igor’s interpretation:
[image: image17.png][Execution Environment]

[Consumer]

intermediary|

Provider

· An Intermediary is a flavor of Execution Environment that contains only Proxy Services.

· A Provider is a flavor of Execution Environment that contains only Service Instances

· A Requester is a flavor of Execution Environment that contains only Requestors

· These roles can collapse in one Execution Environment, in which case roles are indifferentiable from one another at the Execution Environment level.

I14. Management Perspective (A Guideline or a Use Case)

Resolution: Mark will try to work this in an intermediary/service proxy agnostic manner. Its valuable for others (and us) to understand the difference between what management clients see from a web service and what the WSEE sees from the web service and what the provider needs to manage.

This issue was raised by Mark Potts.

Diagrams & Text by Mark Potts.

Provider’s Perspective
A Provider needs and should have management capabilities and visibility beyond the Service, because they are responsible for the provision of the service they have published. The Provider therefore has management capabilities (visibility and control) over elements of the architecture that a Requester would not, i.e. the Provider Platform - Host Environment (I think that we have used WSEE in previous docs). The Provider could, of course, expose management information and operations for the Service’s Host Environment, and the Service Proxy / Instances it hosts, but is unlikely to want to in the majority of cases.

[image: image18.jpg]

The separation of Service (abstract) and the Instances (Proxies or Instances) that support the Service is important to the Provider such that they can manage at both levels. For example, Service Providers may well want to replicate instances of a service within the Host Environment to better meet SLAs, or perhaps failover to proxies that represent redundant services hosted elsewhere. In this case, being able to manage the Service as it is exposed to the Requester and the (Proxies or Instances) supporting that Service will be important (shutdown non-performant service instances, launch new service instances to meet SLAs in peak load periods, etc.).

[image: image19.jpg]

To be clear, not that this paper delves into the specifics of an implementation, the management interfaces for a Service will most likely be implemented through the Provider Platform / Host Environment that controls Services themselves, but that does not mean that Services are not managed elements of the conceptual architecture.

Requester Perspective
From the Requesters perspective, they have visibility at the level of the Service Definition they have consumed (and any management interfaces defined for the Service), and in most cases will not be afforded access to management information and operation at the Host or Service Instance (Proxy or Instance) level. Thus, the Requester’s management capabilities and interaction are with the Service itself.

[image: image20.jpg]P s

The types of management that are afforded to Requesters surround information provision rather than control (because the management is at the abstract level). For example, the Requester may want to look at the performance and availability metrics of a Service to ensure that it is meeting its Service Level Agreement(s). Intermediaries may well want to do the same, such that they can meet the SLA‘s they in turn have published for their own Proxy representation(s) of that Service.

5. Resolved Issues

I1. Are Service identifiers tied to wsdl uri

 Resolution:No. Service WSDL URI exist independt of the location URI of the service or the service identifier.

I2. Should wsdl uri and access uri be in service configuration

 Resolution:Yes. Given a uri/location of a service you should be able to get to its WSDL.

I3. Managing service types vs service instances

· handler chains

· max instances

Resolution:Yes and Yes

I4. Can we define a XML schema for the UML model for the data

Resolution: No, but we could go ahead and define one and decide where to go to standardize it.

I7. Service Description components

[Do we need to manage Service Description?]

This issue was raised by Yin-Leng Husband, Heather Kreger, Igor Sedukhin, Mark Potts.

Diagrams & Text by Igor Sedukhin.

[image: image21.png]Service

4 +eonformsTo [Srvice Type]
—
[Service Description| Kl
i
aefines»
|
+description | 1 1 '
+concretizedBy)
lindings|

+describes

1

· Service maintains its own Service Description. It is one-to-one bidirectional relationship.

· Service Description conforms to one or more Service Types. [Service Type is a set of portTypes in the WSDL sense. These can be in one or separate WSDL documents.]

Service Description is concretized by one or more Bindings. Bindings implicitly refine Service Types. Resolution: We don’t think that WSDLs themselves need to be managed. However, WSDL is a configuration data element of a service, it should be possible to get the WSDL from the service directly or indirectly.

I8. Discovery Mechanism components

Resolution: OK, concrete implementations need to be managed. What is the management data that is common. See my update to this section above for registry management data

Rolled into the document.

I9. Do we need “Hosted” Service?

Resolution: Whats different to manage this? Hosted services know about their execution environment, services do not know about their execution environment. The execution environment knows about both services and hosted services. We will add this to the managed components to be defined. If there is not enough unique, it will be folded into service and disappear.

Rolled into the document.

I10. Interaction components

Resolution: Will add to work for defining management of hosted service. This may be getting close to management and out of manageability. We can see the benefit of having a standard interface to access this information if the EE or Hosted Service does support it.

Rolled into the document.

6. Appendix: Glossary

Handler

WSEE

Handler chain

Intermediary

Manageability

Management PortType

Service Proxy

7. Appendix: Additional Guidelines and Use Cases

