
Life Cycle General Use Case

SIMILE General Use Case #2: Lifecycle
Management of Digital Objects

Modelled after Section 2 of SIMILE Use Cases Document

Key Challenges being addressed by this use case

A core function of an OAIS-compliant archive is to maintain sets of submissions and
distribution agreements that define the SIP and DIP formats that the archive will
support, and with knowledge of these agreements, design appropriate AIP structures,
ingest and maintenance processes such that these agreements may be successfully
fullfilled over time.

Capabilities that we believe to be important in accomplishing this objective include:

policy expression, management & enforcement
digital object modelling
interaction with a digital object via an API
definition, insertion, and management of views on objects
event modelling
modelling and connecting triggers - responses to events
audit metadata generation, and audit services

Core of the generic problem: Communities coming to table, seeking agreement with
the Library about what submission agreements they will have with the Library. The
library must have some way to codify that SIPs submitted get turned into AIPs. And,
over time, how AIPs get acted upon over time for the archive to success in its mission.
Including, on the outbound side, what DIPs we have committed to (or wish to commit
to).

Further, throughout this process, all of these changes, omissions, extension have been
made; must be able to answer the question, what happened over the course of our
stewarfship of this AIP. Answer not only for ourselves, but for third parties; nobody
needs to "trust us," but rather there is a way to test/validate that the archive is being
run according to agreed-upon/committed-to policies.

1. Conversation occurs between Library and Community about what SIPs/DIPS are
desirable

and what kinds of services are implied, along path from SIP through AIP to
DIP

e,g. transformation, indexing, etc.
submission agreement capture

these are the (kind of) services we expect
codification of this agreement

2. AIP Design: Bearing in mind the community-specific nature of the SIP and DIP
Agreements, as well as the Library's overall committment to preservation and
stewardship over time, someone in the Library make decisions about the required
structure and information content of AIPs for content submitted by this
community.

Page 1 of 4O p e n W i k i - Life Cycle General Use Case

7/17/2003http://15.25.148.115/OpenWiki/ow.asp?p=LifeCycleGeneralUseCase&a=print&re...

some of these decisions are primarily content- or format-specific, and slice
across communities and collections; for example, reflecting Library policy
for preserving documents in PDF format or images.
some of these decisions reflect the nature of the specific agreements that
the Library has made with this community; e.g. indexing or viewer support,
or particular community-specific schema.

3. SIP/AIP Transformation Design
and AIP/DIP Transformation Design
defining what the process actually looks like (how it is actually carried out)

the transformation(s) required
the services required to bring these about

someone must define the rules and sub-workflows that must be
implemented

4. Preservation Planning
How should AIPs be transformed and/or augmented over time in response
to preservation policies defined by the Library
The Library agrees with the Community to some presvervation level, which
is defined by a sett of policies which they have published.

5. Event definition, selection, prioritization
Collection management is fundamentally based on binding services to
events
The Library defines those events that are important for it to be able to
specify the kinds of transformation steps that are required

as well as the kinds of preservations "triggers" that it finds important
6. View generation and Maintenance

A DIP is a view on an object with a committment from the Library to
support
Over time, the Library, in response to shifting demands from the
COmmunity may introduce additional DIPs (aka views on AIPs) and commit
to supporting these views
The Library must be equipped to answer the questions:

what is the complete set of views we are committed to
what is the complete set of services required to support these
committed-to views

7. Audit/Provenance Metadata Generation & Use
How did this object get to be the way that it is?
Libraries and/or Third Parties have a need to be able to answer the
question:

which transformations have occured for this object?
In response to which rules, policies, etc.

Third parties may have an additional need to assess over time the
consistency of the operation of the archive with the Library's stated and
committed-to policies

Have objects actually been transformed as agreed-to
Are the overall service levels of the archive being met?

Prototype/Demonstrators: Lifecycle
Management of Digital Objects

1. Modelling and Management of SIP & DIP Agreements
Structure (of model)

Page 2 of 4O p e n W i k i - Life Cycle General Use Case

7/17/2003http://15.25.148.115/OpenWiki/ow.asp?p=LifeCycleGeneralUseCase&a=print&re...

design approach
"Negotiation" workflow

sequence of managed steps leading to mutally-"blessed" agreement
persisted in repository

Presentation (of instance)
authoring/creation
viewing
includes pre- and post-signature agreements

Binding of "agreement" objects to "policy" objects
association of "clauses" within natural language agreements with
policy specifications

Binding of "agreement" objects to "service" objects
Agreement Review Interface: Show me agreements with xxx, yyy, zzz/
characteristics
Deliverable: Stand-along Agreement Manager demonstrating the display
and management of SIP & DIP agreements, esp. binding of agreement
elements to functional policy objects that implement agreement elements.

2. Repo-based AIP demonstration
Create model AIP
Implement on M-Fedora
Sketch DIP -> AIP and AIP -> SIP transformaton models
Deliverable: Demonstration of exemplar AIP implemented on M-Fedora.
Demonstration of DIP disseminator(s) providing "views" on this AIP.
DEmosntration of SIP -> AIP transformation capability.

3. Joseki-based DIP demonstration
one approach to "views"
Deliverable: Demonstration of Joseki service layer bolted on Fedora or
Dspace instance. Implementation of Joseki queries that generate specific
exemplar DIPs.

4. Fedora-based DIP demonstration
another approach to views
Deliverable: Demonstration of dissemination of exemplar DIP from
Fedora.

5. Policy-based Transformation Engine
Workflow-oriented policy instance

For this collection and this type of submission, collect XXX metadata
and do YYY transformation

Policy engine
SIP submission validation

Template-based metadata collection, type validation
Policy-driven transformation

remote, message-based service invocation (e.g. SOAP-based
indexing submission, image transformation, whatever)

Deliverable: Demonstration of workflow-oriented policy interpretor.
Demonstration of ability to invoke transformation-oriented (e.g. JPG -> TIF
transformation, PDF -> TXT extraction) or indexing service calls due to
triggering of policy.

6. Event-driven Preservation Policy Engine
Management-oriented policy instance
Policy engine
Management-oriented, event-driven service invocation

Page 3 of 4O p e n W i k i - Life Cycle General Use Case

7/17/2003http://15.25.148.115/OpenWiki/ow.asp?p=LifeCycleGeneralUseCase&a=print&re...

Calendar-based integrity check
Calendar-based transformation
Alert-based transformation (e.g. due to schema change)
(related) Instance changed-based service invocation

Deliverable: Demonstration of preservation-oriented policy interpretor.
Demonstration of ability to invoke appropriate preservation-oriented service
calls due to triggering of policy. Possible approach: Use existing Ponder
implementation (Imperial).

7. Event modelling
Event base structure

Specialization to specific event
Relationship to Harmony ABC Event Model?

In ABC model, events have inputs, outputs, acts and contexts
specific resource attributes will depend on the type of resource and
the domain-specific requirements

Propagation of event
Referencing of event to History "view"

e.g. named Joseki query to
Deliverable: Demonstrate event specification and "watch" capability in
selected repository testbed (e.g. Fedora or Dspace). Demonstrate
management of events as first-class objects within repo, including
persistence, management and dissemination (esp. views on event
metadata), as well as management of the event object model itself.

8. Event-driven Audit Demonstration
Audit-oriented policy instance
DO action-based event as policy "trigger"
Audit record model

incl. event object reference or instance
Deliverable: Demonstration of audit-oriented policy interpretor, including
expression of "event-watching" policies. Demonstration of ability to invoke
appropriate audit-oriented service calls (e.g. logging of specific
transformations, changes, distruptions) due to triggering of policies.

Page 4 of 4O p e n W i k i - Life Cycle General Use Case

7/17/2003http://15.25.148.115/OpenWiki/ow.asp?p=LifeCycleGeneralUseCase&a=print&re...

