
WebNN Small Language Model (SLM)
Performance Optimization Case Study

Yuheng Wei, Wei Wang, Wanming Lin, Jonathan Ding, Ningxin Hu – Intel

Nov 2025, @TPAC

Agenda

WebNN SLM support and challenges

Operators' fusion

On-device KV cache

Tensor binding

Dynamic shape

Results and discussion

Run ORT-GenAI SLM on WebNN: Stack Overview

WebNN

ONNX Runtime

CPU EP WebGPU EP

ONNX Runtime GenAI Pipeline
(C++, Python)

SLM Models
(Phi-mini, Qwen, TinyLlama etc.,)builder.py

(ORT-GenAI)

SLM Models
(Phi-mini, Qwen, TinyLlama etc.,)

WebNN GenAI Pipeline
(JavaScript)

ONNX Runtime Web

ONNX Runtime

CPU EP WebGPU EP

Native ORT-GenAI WebNN + ORT Web

WebNN Chat Demo

Supported SLMs:

• Phi-4 Mini Instruct 3.8B (2.5G)

• Qwen2 0.5B (555M)

• TinyLLama 1.1B (714M)

• DeepSeek R1 Distill Qwen 1.5B (1.5G)

Use SLMs generated by ORT GenAI— fused and quantized ONNX models

https://onnxruntime.ai/docs/genai/

Key Building Blocks of ORT-GenAI SLM Models

MatMulNBits

GroupQueryAttention (GQA)

SkipSimplifiedLayerNorm /
SimplifiedLayerNorm

RotaryEmbedding

KV Caches

…

Profiling of ORT-GenAI SLM Models

Profiling Qwen2-0.5B on native ORT-GenAI WebGPU EP

Macro ONNX ops like MatmulNBits, GQA etc., take 74.3% of total inference time

Intel ConfidentialWeb Platform Engineering 7

ONNX Ops Decomposition by WebNN Ops
MatMulNBits SimplifiedLayerNorm RotaryEmbeddingSkipSimplifiedLayerNorm

GroupQueryAttention

No operators’ fusion: baseline performance

Profiling Qwen2-0.5B on WebNN — the baseline

Decomposition increase the ops count: 446 -> 2421 ops

Inference is blocked by DequantizeLinear (CPU kernel) and CPU-GPU data copy
(83.9%): > 100X slower than native ORT-Gen AI

WebNN Operation Fusion

WebNN spec is built upon a foundation of core primitive operators

Framework macro-ops need to be decomposed into primitive op subgraph

• sub-optimal inference perf, increased memory pressure

Experiment: Fuse performance critical macro-ops in WebNN implementation

MatMulNBits Fusion

26% graph node reduction

TTFT (time to first token): ~5x speedup, TPS (token per second) : ~73x speedup

• Baseline = decomposed primitive op graph

GQA Fusion

Decomposed GQA subgraph in WebNN, 1 node → subgraph with 24 nodes

GQA Fusion

GQA fusion: a Subgraph-Aware DFS

~6X speedup over subgraph inference

1. start from MatMul

2. Match independent nodes

3. Match input V

4. Match scatter indices subgraph

5. Match attention bias subgraph

6. Match Q * K subgraph

WebNN Operation Fusion Summary

> 100x speedup vs. no fusion

60% speedup vs. MatMulNBits fusion only

TPS: ~52% of native ORT-GenAI

• others = RotaryEmbedding + [Skip]SimplifiedLayerNormalization fusion

Graph Node Count

Performance

CPU-based KV Cache Overhead

Tensor data copy takes longer than operator execution

Use On-Device Tensor for KV Cache

Brings another ~50% speedup

TPS: ~78% of native ORT-GenAI

• others = RotaryEmbedding + [Skip]SimplifiedLayerNormalization fusion
• all fusion = MatMulNBits + GQA + others

Allow same tensor for input and output

KV Tensor 1 KV Tensor 2Inference
input output

KV Tensor 1KV Tensor 2 Inference
input output

Iteration 1

Iteration 2

Before using same tensor

KV Tensor Inference
outputinput

KV Tensor Inference
outputinput

Iteration 1

Iteration 2

After using same tensor

• No need to swap KV cache tensors.
• Less # tensors -> less footprint
• Less tensor bindings for dispatch

Tensor binding overhead

Qwen2 0.5B model:
• Input Tensors:

o Input ids tensor
o Attention mask tensor
o Position ids tensor
o 48 k-v tensors

• Output Tensors:
o logits tensor
o 48 k-v tensors

• Totally 100 Tensors

Issue: The tensor binding information (name -> tensor token) is
transmitted at each dispatch, which also takes time.

1.362 ms (7.69%)

17.718 ms

Dispatch interface optimization
• Option 1: Split the dispatch IDL interface into two IDL interfaces (bind + dispatch).

o Bind: update tensor binding information.
o Dispatch: trigger graph execution using tensors bound via the Bind interface.

• Option 2: Cache tensor binding information in implementation.

Dispatch optimization result

Brings another ~10% speedup

TPS: ~86% of native ORT-GenAI

Dynamic shape usage for SLM

• One model for both Prefill and Decoding phases

• Prefill Phase:

The input_ids, position_ids, and attention_mask in shape of [batch_size, sequence_length]

sequence_length is the length of the prompt which is dynamic

• Decoding Phase:

The input_ids and position_ids are shaped [batch_size, 1] because only one token is processed per step

The attention_mask grows dynamically to [batch_size, total_sequence_length]

total_sequence_length = sequence_length + t (prompt length + generated tokens) which is dynamic.

Adapt SLM to static shape

Static Models:

• Need separate static models for the Prefill and Decoding stages.

• Each model is compiled with fixed input shapes.

Fixed Sequence Length:

• The sequence length (sequence_length) is set to a constant value, typically max_sequence_length.

• This applies to input_ids, position_ids, and attention_mask.

Cons

Higher Memory Usage: one more static model required

Double Complication Time Cost

Inefficiency for Variable-Length Inputs in Prefill phase: All inputs must be padded to max_sequence_length, leading to inefficiency.

Increased Deployment Complexity: Managing multiple static models increases operational overhead.

Discussion

Accessing to optimized macro ops is key for SLM performance

• MatMulNBits, GQA etc.,

• Support in spec or fusion in implementation?

Support dynamic input shapes?

Allow same tensor for input and output?

Decouple tensor binding and graph dispatch?

	Slide 1: WebNN Small Language Model (SLM) Performance Optimization Case Study
	Slide 2: Agenda
	Slide 3: Run ORT-GenAI SLM on WebNN: Stack Overview
	Slide 4: WebNN Chat Demo
	Slide 5: Key Building Blocks of ORT-GenAI SLM Models
	Slide 6: Profiling of ORT-GenAI SLM Models
	Slide 7: ONNX Ops Decomposition by WebNN Ops
	Slide 8: No operators’ fusion: baseline performance
	Slide 9: WebNN Operation Fusion
	Slide 10: MatMulNBits Fusion
	Slide 11: GQA Fusion
	Slide 12: GQA Fusion
	Slide 13: WebNN Operation Fusion Summary
	Slide 14: CPU-based KV Cache Overhead
	Slide 15: Use On-Device Tensor for KV Cache
	Slide 16: Allow same tensor for input and output
	Slide 17: Tensor binding overhead
	Slide 18: Dispatch interface optimization
	Slide 19: Dispatch optimization result
	Slide 20: Dynamic shape usage for SLM
	Slide 21: Adapt SLM to static shape
	Slide 22: Discussion

