
Tooltips, Hovercards,
Menus, etc.

Mason Freed
TPAC 2024

September 23-27, 2024

Outline

● Use cases we’re interested in solving
● Examples from production
● Required APIs
● Interest target API details

Use Cases To Solve

● “Tooltips” (or “plain hints”)
○ Contain auxiliary information, not “required” for the user to see.
○ Does not contain interactive or semantically interesting (e.g. table) content.
○ Often used to remove non-critical information from information-dense pages.

● “Hovercards” (or “rich hints”)
○ Also limited to auxiliary information.
○ Can contain more interesting content, including interactive components.
○ Often used to remove non-critical information from information-dense pages.

● “Hover menus”
○ A menu that is activated on hover.
○ Also always activated on activation (click, touch, Enter key, etc.)

Key requirements

● The API solves the very common use cases on the prior slide.
● Declarative solution - no JS needed.
● Accessibility built-in - no ARIA needed.
● Works for non-desktop and non-mouse systems.

Examples in production - Github hovercards

Examples in production - Facebook hovercard and tooltip

Note the nested
tooltip, which
also has a
title
double-tooltip

Examples in production - Wikipedia hovercard

Examples in production - Gap hover menu

Quick note on “auxiliary”

● Most design systems say that hovercard/tooltip content must be “auxiliary”,
meaning not required to be seen to accomplish a task.

● However, “auxiliary” is a grey area.
● E.g. for me, to fully understand a Github

comment, I need to know who the
commenter is.

● Several production sites said that their
engagement metrics were negatively
impacted by reducing access to
hovercard content.

1. The hovercard displays on top of page content.

2. The hovercard is positioned next to the element it explains.

3. The hovercard should light-dismiss, but should not dismiss other normal
popovers like select pickers.

4. The user triggers the hovercard by hovering with a mouse, focusing with the
keyboard, or long-pressing on a touchscreen.

5. Proper a11y connections need to be made, e.g. aria-expanded, aria-details,
potentially aria-describedby, etc.

Features needed to build a hovercard
Popover API

popover=hint

interest invokers

Anchor
Positioning

https://open-ui.org/components/popover-hint.research.explainer/#accessibility
https://html.spec.whatwg.org/multipage/popover.html#the-popover-attribute
https://github.com/whatwg/html/pull/9778
https://open-ui.org/components/interest-invokers.explainer/
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_anchor_positioning
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_anchor_positioning

Interesttarget declarative API proposal

 interesting link

 <div popover id=card>Hovercard</div>

● The popover is shown when “interest is shown” in the link.
● The popover is closed when “interest is lost” in the link.
● ⇒ The same pattern can work for hovercards, tooltips, and menus.

Input modalities

● By far the most difficult part of this API (both for web standards and for design
system developers) is handling all of the input modalities:

○ Nearly all design systems handle mouse-activation via hover.
○ Most design systems try to provide good screen reader support, with

varying success.
○ Some design systems build affordances for keyboard, again with varying

success.
○ Almost no design system builds touch screen support.
○ Almost no design system builds support for “other” input types.

Mouse

● Hover is the standard way to do this, universally implemented in design
systems.

● Some questions around the edges:
○ Losing interest happens when the element or the target element are de-hovered.
○ Controlling delays for show and hide
○ “Safe triangles”
○ Second-popover zero-delay

● But overall, this is “solved” and roughly standard.

https://github.com/w3c/csswg-drafts/issues/9236
https://github.com/openui/open-ui/issues/963
https://github.com/w3c/csswg-drafts/issues/9236#issuecomment-2289395680:~:text=Can%20eliminate%20or-,significantly%20reduce%20the%20delay%20for%20opening%20the%20n%27th%20hint%20after%20a%20first%20one,-is%20open%3A%20based

Keyboard

● Methods used by design systems:
○ Show hovercard as soon as the element is focused.
○ Show hovercard when focused, but after a delay.
○ Add a focusable icon (ℹ) next to the element, which can be keyboard-activated. This is

typically only used in very special circumstances, such as the “CVV” field of credit card
forms.

○ Use a special hotkey, such as ALT-Up Arrow, to activate the hovercard.
● Issues:

○ Users tend to find the pure-focus based activation annoying and distracting, since it
interferes with normal keyboard navigation of the site.

○ The focusable icon (ℹ) approach similarly adds both visual clutter and extra tab stops
that users and developers do not like.

○ The hotkey approach works, and is used in some design systems, but it lacks
discoverability.

Keyboard - ideas (add yours!)

● UA provides a special hotkey to “show interest” via the keyboard.
● Discoverability: focusing the element shows a UA-provided tooltip that informs

the user about the hotkey.
● (Alternative idea next slide.)
● Losing interest happens via ESC.

Side-bar: hotkey “cheat sheet”

● The most common keyboard pattern for hovercards seems to be a hot-key.
● There are a few issues with hot-keys:

○ They are not easily discoverable
○ It is hard to ensure uniqueness and avoid “collisions”.

● Idea: what if there was a browser-standardized way to…
○ Give users an easy way to see all hot-keys for a page and for any element? I.e. a “cheat

sheet” for hot-keys. This would include browser-provided hot-keys (such as the Tab key) and
developer-provided hot-keys (e.g. from accesskey).

○ Give developers a way to declare all of their hotkeys for a page/element, which ties in to the
above “cheat sheet”? More than what’s available from accesskey.

○ Perhaps provide a way to let the browser select from alternative hot-keys when collisions
occur.

● This requires more work, but perhaps it alleviates many problems in addition
to the hovercard activation problem.

● Potential methods (no actual implementations that we could find):
○ Fake long-press via `touchstart`, `touchend`, and tricks like

`-webkit-touch-callout: none`.
○ Add a focusable icon (ℹ) next to the element, which can be

keyboard-activated.
● Issues:

○ “True” long-press support is commonly requested. It is not easily
implementable via existing web APIs. It is available and commonly-used on
native apps.

○ Almost no design system supports touch screen activation of hovercards at
all, due to the lack of an API.

Touch screen (biggest open question)

● add an item to the UA-provided long-press menu that
provides hovercard activation (or the hovercard itself?),
here:

● If no context menu would have been shown by long-press,
simply directly trigger the popover.

● Another option: first show the developer-provided
hovercard, and then provide the user an extra-tap way to
get back to the context menu.

● Losing interest happens via tapping outside the popover.

Touch screen - ideas (add yours!)

Other Input Modalities

● Examples:
○ Playstation
○ Vision Pro
○ Watch face (touch?)

● No design system we could find supports these explicitly.
● By virtue of their uniqueness and novelty, standardizing exact solutions for

these interfaces seems tricky.
● Proposal: leave these up to the UA. If there’s a way to add an affordance for

activating the hovercard, do it. If it doesn’t make sense, rely on hovercards
being “auxiliary”.

Conclusion

● This API (interesttarget) promises to solve several very common use cases on
the web, including tooltips, hovercards, and hover-menus.

● The mechanics for developers should be very simple, and should remove the
need to re-invent hovercard activation for each design system, and on each
platform.

● The primary open questions are around the specifics for keyboard and
touchscreen activation.

