
W3C WebRTC
WG Meeting

May 21, 2024
8 AM - 10 AM

Chairs: Bernard Aboba
Harald Alvestrand
Jan-Ivar Bruaroey 1

W3C WG IPR Policy
● This group abides by the W3C Patent Policy

https://www.w3.org/Consortium/Patent-Policy/
● Only people and companies listed at

https://www.w3.org/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

2

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!
● Welcome to the May 2024 interim meeting of

the W3C WebRTC WG, at which we will
cover:
○ Captured Surface Control, Encoded Transform,

Mediacapture-main, P2P API, RtpTransport
● Future meetings:

○ June 18
○ July 16

3

https://www.w3.org/2011/04/webrtc/wiki/Main_Page#Meetings
https://www.w3.org/2011/04/webrtc/wiki/June_18_2024
https://www.w3.org/2011/04/webrtc/wiki/July_16_2024

About this Virtual Meeting
● Meeting info:

○ https://www.w3.org/2011/04/webrtc/wiki/May_21_2024

● Link to latest drafts:
○ https://w3c.github.io/mediacapture-main/
○ https://w3c.github.io/mediacapture-extensions/
○ https://w3c.github.io/mediacapture-image/
○ https://w3c.github.io/mediacapture-output/
○ https://w3c.github.io/mediacapture-screen-share/
○ https://w3c.github.io/mediacapture-record/
○ https://w3c.github.io/webrtc-pc/
○ https://w3c.github.io/webrtc-extensions/
○ https://w3c.github.io/webrtc-stats/
○ https://w3c.github.io/mst-content-hint/
○ https://w3c.github.io/webrtc-priority/
○ https://w3c.github.io/webrtc-nv-use-cases/
○ https://github.com/w3c/webrtc-encoded-transform
○ https://github.com/w3c/mediacapture-transform
○ https://github.com/w3c/webrtc-svc
○ https://github.com/w3c/webrtc-ice

● Link to Slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● The meeting is (still) being recorded. The recording will be public.
● Volunteers for note taking? 4

https://www.w3.org/2011/04/webrtc/wiki/May_21_2024
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-extensions/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions/
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/mst-content-hint/
https://w3c.github.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://github.com/w3c/webrtc-encoded-transform
https://github.com/w3c/mediacapture-transform
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://www.w3.org/2011/04/webrtc/wiki/May_21_2024
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

W3C Code of Conduct
● This meeting operates under W3C Code of Ethics and

Professional Conduct

● We're all passionate about improving WebRTC and the
Web, but let's all keep the conversations cordial and
professional

5

https://www.w3.org/Consortium/cepc/
https://www.w3.org/Consortium/cepc/

Virtual Interim Meeting Tips
This session is (still) being recorded

● Click to get into the speaker queue.
● Click to get out of the speaker queue.
● Please wait for microphone access to be granted before

speaking.
● If you jump the speaker queue, you will be muted.
● Please use headphones when speaking to avoid echo.
● Please state your full name before speaking.
● Poll mechanism may be used to gauge the “sense of the

room”.

6

Understanding Document Status
● Hosting within the W3C repo does not imply adoption by the

WG.
○ WG adoption requires a Call for Adoption (CfA) on the

mailing list.
● Editor’s drafts do not represent WG consensus.

○ WG drafts do imply consensus, once they’re confirmed
by a Call for Consensus (CfC) on the mailing list.

○ Possible to merge PRs that may lack consensus, if a
note is attached indicating controversy.

7

Issues for Discussion Today
● 08:10 - 08:40 AM Captured Surface Control (Elad)
● 08:40 - 08:55 AM WebRTC-Encoded-Transform (Florent)
● 08:55 - 09:10 AM Mediacapture-main (Jan-Ivar)
● 09:10 - 09:30 AM Local P2P API (Anssi Kostiainen, Michiel De Backker)
● 09:30 - 09:50 AM RtpTransport (Peter Thatcher)
● 09:50 - 10:00 AM Wrapup and Next Steps (Chairs)

Time control:
● A warning will be given 2 minutes before time is up.
● Once time has elapsed we will move on to the next item.

8

Captured Surface Control (Elad Alon)
Start Time: 08:10 AM
End Time: 08:40 AM

9

A user is in a video call and shares a tab.

How does the user…
● …scroll the captured tab?
● …change the zoom level?

If the user focused the captured tab…
● …how would the user see

remote participants?
● …see annotations and additional

content (e.g. a timer)?
● How would the user interact with VC

app’s controls?

Problem description

Produce an API allowing applications to scroll
and zoom captured-tabs. (Possibly extend to
captured-windows in the future.)

Applications can then communicate this to the
user by building their own app-level user
onboarding and controls.

Proposal

https://docs.google.com/file/d/1nTpf1GpKNhQ7YdLoNC6j2S9GyUknqqbt/preview

const initialPermState = await navigator.permissions.query({
 name: 'captured-surface-control'
});

let hasCscPermission = (initialPermState.state === granted');
if (initialPermState.state === 'prompt') {
 startButton.hidden = false;
 startButton.addEventListener('click', async () => {
 const noOpWheelAction = {};
 await controller.sendWheel(noOpWheelAction);
 startButton.hidden = true;
 hasCscPermission = true;
 });
}

// Error handling - an exercise for the reader.

Sample usage 1: Obtain permission

Sample usage 2: Zoom read-access

const zoomLabel = document.querySelector('#zoomLevelLabel');

// Read current zoom-level and expose it to the user.
zoomLabel.textContent = `${controller.getZoomLevel()}%`;

// Monitor changes to zoom-level, either through the app’s own
// control of the zoom, or through the user’s direct manipulation
// of the browser’s zoom-level for the captured tab.
controller.addEventListener('capturedzoomlevelchange', (event) => {
 zoomLabel.textContent = `${controller.getZoomLevel()}%`;
});

Note:
Read-access is synchronous and not permission-gated.

Sample usage 3: Zoom write-access

const zoomIncreaseButton = document.getElementById('zoomInButton');

zoomIncreaseButton.addEventListener('click', async (event) => {
 const levels = CaptureController.getSupportedZoomLevels();
 const index = levels.indexOf(controller.getZoomLevel());
 const newZoomLevel = levels[Math.min(index + 1, levels.length - 1)];

 try {
 await controller.setZoomLevel(newZoomLevel);
 } catch (error) {
 // Inspect the error.
 // ...
 }
});

zoomDecreaseButton() left as an exercise for the reader.

Sample usage 4: Scrolling

previewTile.addEventListener('wheel', async (event) => {
 const [x, y] = translateCoordinates(event.offsetX, event.offsetY);
 const [wheelDeltaX, wheelDeltaY] = [-event.deltaX, -event.deltaY];

 await controller.sendWheel({ x, y, wheelDeltaX, wheelDeltaY });
});

function translateCoordinates(offsetX, offsetY) {
 const previewDimensions = previewTile.getBoundingClientRect();
 const trackSettings = previewTile.srcObject.getVideoTracks()[0].getSettings();

 const x = trackSettings.width * offsetX / previewDimensions.width;
 const y = trackSettings.height * offsetY / previewDimensions.height;

 return [Math.floor(x), Math.floor(y)];
}

Discussion (End Time: 08:40)
●

19

WebRTC-Encoded-Transform (Florent)
Start Time: 08:40 AM
End Time: 08:55 AM

20

For Discussion Today
● Issue 225: Add captureTimestamp senderCaptureTimeOffset to the encoded

frame metadata
● Issue 226: Expose RTCEncodedAudioFrame interface in Worklets

21

https://github.com/w3c/webrtc-encoded-transform/issues/225
https://github.com/w3c/webrtc-encoded-transform/issues/226

Issue 225: Add captureTimestamp senderCaptureTimeOffset to the encoded frame
metadata

● RTCRtpContributingSource is extended in WebRTC-Extensions:
○ captureTimestamp of type DOMHighResTimeStamp.
○ senderCaptureTimeOffset of type DOMHighResTimeStamp.

● Proposing to add those fields to:
○ RTCEncodedAudioFrameMetadata
○ RTCEncodedVideoFrameMetadata

● Exposing value for locally captured frames
● Exposing value for received frames with abs-capture-time RTP header

extension
● Tentative PR

22

https://github.com/w3c/webrtc-encoded-transform/issues/225
https://w3c.github.io/webrtc-extensions/#rtcrtpcontributingsource-attributes
https://www.w3.org/TR/hr-time-3/#dom-domhighrestimestamp
https://www.w3.org/TR/hr-time-3/#dom-domhighrestimestamp
https://github.com/w3c/webrtc-encoded-transform/pull/228

Issue 226: Expose RTCEncodedAudioFrame interface in Worklets

● Goal is to receive audio frame data in an AudioWorklet for decoding using
a WASM implementation.

● This could be done with an RTCRtpScriptTransformer in 2 ways:
○ Run a transformer on a Worker and transfer the frame data to an

AudioWorklet.
■ Doesn’t need any API change.
■ Leads to more JS invoked in a non real-time context first, bad for

performance and reliability.
○ Run the transformer on an AudioWorklet

■ Requires API change
■ Less thread hopping

23

https://github.com/w3c/webrtc-encoded-transform/issues/226

Issue 226: Expose RTCEncodedAudioFrame interface in Worklets

● API changes required to run a RTCRtpScriptTransformer in an
AudioWorklet
○ Expose interfaces to AudioWorklet context

■ RTCRtpScriptTransformer
■ RTCEncodedAudioFrame
■ RTCTransformEvent

○ New constructor for RTCRtpScriptTransform that accepts a first
argument of type AudioWorklet only if the sender is of kind “audio”

○ Add “onrtctransform” to AudioWorkletGlobalScope

● Possible extra-hardening of keyframe related functionality to throw when
used on a sender of kind “audio” to prevent exposing video related
interfaces.

24

https://github.com/w3c/webrtc-encoded-transform/issues/226

Mediacapture-main (Jan-Ivar)
Start Time: 08:55 AM
End Time: 09:10 AM

25

For Discussion Today
● Issue 1003: repo name nit: it'd be nice if this were simply

w3c/mediacapture

● Issue 966: Should devicechange fire when the device info changes?

26

https://github.com/w3c/mediacapture-main/issues/1003
https://github.com/w3c/mediacapture-main/issues/966

Today we have:

● https://www.w3.org/TR/mediacapture-streams
● https://wpt.fyi/results/mediacapture-streams
● https://w3c.github.io/mediacapture-main

Proposal(s): change all (or just some) to:

1. https://www.w3.org/TR/mediacapture
2. https://wpt.fyi/results/mediacapture
3. https://w3c.github.io/mediacapture

Related:

● How come https://w3c.github.io/webrtc-pc and https://www.w3.org/TR/webrtc ?

Issue 1003: repo name nit: it'd be nice if this were simply
w3c/mediacapture

27

https://www.w3.org/TR/mediacapture-streams
https://wpt.fyi/results/mediacapture-streams
https://w3c.github.io/mediacapture-main
https://www.w3.org/TR/mediacapture
https://wpt.fyi/results/mediacapture
https://w3c.github.io/mediacapture
https://w3c.github.io/webrtc-pc
https://www.w3.org/TR/webrtc
https://github.com/w3c/mediacapture-main/issues/1003

Recap from October: The spec normatively says:

This limits when the device change notification steps run to when OS changes happen, limiting
both when devicechange fires and when mediaDevices.[[storedDeviceList]] changes.

This is not the same as calling it every time enumerateDevices() would produce different results.

Safari violates this, firing it from set the device information exposure in getUserMedia(), IFF the
application has previously called enumerateDevices() AND the user has >1 device/kind

Also, is an OS device label change covered under “new” media input? OP and others want this.

Competing uses cases: Updating in-content UX vs. strong signal from user inserting a device

Issue 966: Should devicechange fire when the device info
changes? (Jan-Ivar)

https://www.w3.org/2023/10/17-webrtc-minutes.html
https://w3c.github.io/mediacapture-main/#event-mediadevices-devicechange
https://w3c.github.io/mediacapture-main/#dfn-device-change-notification-steps
https://w3c.github.io/mediacapture-main/#set-device-information-exposure
https://github.com/w3c/mediacapture-main/issues/966

Claim: A user inserting a media device at the start of a call is a strong signal.

But reliably detecting this signal is hard. A devicechange with a new secondary
microphone or camera in the list immediately after getUserMedia() success no longer
means it was inserted by the user

(We shouldn’t rely on applications detecting known headset brands like AirPods: U see ‘em; U use ‘em!)

Do we need two new events?

● deviceinfochange fired for every delta, exposure or label change
● deviceinserted fired post-getUserMedia (even for pre-gUM insertion?)

Discuss (if 3 is too many, we can discuss altering the existing one to be one of the two)

Issue 966: Should devicechange fire when the device info
changes? (Jan-Ivar)

29

https://github.com/w3c/mediacapture-main/issues/966

Discussion (End Time: 09:10)
●

30

Local Peer-to-Peer API
(Anssi Kostiainen, Michiel De Backker)
Start Time: 09:10 AM
End Time: 09:30 AM

31

Local Peer-to-Peer API

Background
Local Peer-to-Peer API?

 New WICG incubation in prototyping
 API to connect securely over a local communication

medium, without the aid of a server in the middle
Motivation

The local network is not a first-class citizen of the web
Goals

Arbitrary bidirectional communication channel
in the context of a local communication medium:

 🔎 Discover, request, and connect to peers
 ✉ Send and receive data
 🔒 Enable secure HTTPS connections

32

��
��

⚠

↔

Local Peer-to-Peer API

Use Cases

33

🧑↔🧑 Offline collaboration

🎮📱↔💻 Local multi-player
📁💻↔📱Local in-app sharing

▶📱↔💻Cross-device workflows

📵Disaster relief
🏠Home services & IoT and more

Local Peer-to-Peer API

https://github.com/WICG/local-peer-to-peer/blob/main/EXPLAINER.md#use-cases

Proposal
● Discovery

○ API inspired by PresentationRequest
& PresentationReceiver

● Authentication
○ Open Screen Protocol to establish

mutual TLS certificates between peers
● Data exchange provided by two APIs:

○ LP2PDataChannel API inspired by RTCDataChannel
■ simple message passing & WebRTC familiarity

○ LP2PQuicTransport API inspired by WebTransport
34

Local Peer-to-Peer API

Comparison

35

Local Peer-to-Peer API

WebRTC Local Peer-to-Peer

Discovery SDP Signaling DNS-SD / mDNS

NAT ICE, STUN, TURN Out-of-scope (local)

Authentication SDP Signaling SPAKE2

Encryption DTLS TLS

Transport SRTP & SCTP QUIC

Data APIs RTCDataChannel LP2PDataChannel
LP2PWebTransport

Media APIs RTCRtpSender &
RTCRtpReceiver

Remote Playback API

→ Purposeful re-use of
browser APIs for developer
familiarity.

Provided by the
OpenScreen
protocol

Feedback wanted
Considerations that in particular benefit from WebRTC WG’s expertise:
1. The interplay between the DataChannel and WebTransport APIs
2. The potential opportunity to unify DataChannel & WebTransport

across HTTP, LP2P, WebRTC transports
3. The interplay between QUIC and WebRTC

Spec draft: https://wicg.github.io/local-peer-to-peer/
Explainer: https://github.com/WICG/local-peer-to-peer/blob/main/EXPLAINER.md
Feedback: https://github.com/WICG/local-peer-to-peer

36

Local Peer-to-Peer API

https://wicg.github.io/local-peer-to-peer/
https://github.com/WICG/local-peer-to-peer/blob/main/EXPLAINER.md
https://github.com/WICG/local-peer-to-peer

Beyond WebSockets (and Data Channel) APIs
● Problem: WebSockets API circumvents transport flow control

○ TCP recv window advertises remaining buffer space
○ When data is removed from the buffer, recv window expands
○ In a browser-based WebSockets API implementation, received data

is moved to the event queue, is delivered to applications via the
onmessage event handler. Problems:
■ recv window expands even if application does not process

incoming messages.
■ Applications cannot exert back pressure without implementing

app layer flow control
● Data Channel: copied the (broken) WebSockets API

37

WHATWG Streams and Back Pressure

● WHATWG Streams API supports backpressure
○ Application data consumption directly coupled to transport flow

control
● APIs based on WHATWG Streams

○ WebTransport API (client/server)
■ Protocols: WebTransport over HTTP/3 (QUIC) or HTTP/2 (TCP)

○ P2P WebTransport API (P2P extension to WebTransport API)
○ WebSocketStream API (stream-based API for the WebSockets

protocol)
■ Protocol: WebSockets over TCP (RFC 6455)
■ Explainer
■ Tracking bug

38

https://w3c.github.io/webtransport/
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http3
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http2
https://w3c.github.io/p2p-webtransport/
https://github.com/whatwg/websockets/pull/48
https://datatracker.ietf.org/doc/html/rfc6455
https://github.com/ricea/websocketstream-explainer/blob/master/README.md
https://issues.chromium.org/issues/41470216

Top 5 Things to Know about P2P QUIC
1. It has already been done (WebTransport started life as p2p)

a. P2P WebTransport API: https://w3c.github.io/p2p-webtransport/
b. P2P Origin Trial: https://developer.chrome.com/blog/rtcquictransport-api

2. Is better than DTLS+SCTP (WebRTC data channels) in some ways:
a. More things being built on QUIC (MoQ, RoQ, …)
b. More implementations of QUIC (for mobile/native apps)
c. P2P QUIC more likely to get real-time congestion control (port of googcc)

3. Is better than WebTransport in some ways:
a. p2p :)
b. supports self-signed certs
c. Is "raw QUIC" underneath (more impls)

4. On the web, it doesn't exist yet (needs public demand)

5. For use in native apps, P2P QUIC has been implemented in:
a. Pion over QUIC
b. RTP over QUIC
c. P2P QUIC (Rust) (no ICE; NAT traversal a "TODO") 39

https://w3c.github.io/p2p-webtransport/
https://developer.chrome.com/blog/rtcquictransport-api
https://github.com/pion/quic
https://github.com/mengelbart/rtp-over-quic
https://docs.rs/quic-p2p/latest/quic_p2p/

What Can You Do With P2P QUIC?

P2P QUIC is potentially useful in scenarios that require peer-to-peer
operation, such as:

● Remote desktop or mobile device
● Peer-to-peer caching
● Console to mobile device game streaming

While these scenarios can be implemented using the WebRTC data
channel, P2P QUIC provides better performance:

● Faster setup time (0RTT)
● More efficient loss recovery
● Fewer false RTOs under widely varying RTT
● Improved congestion control (farewell NewReno!)

 40

Bidirectional Communication on the Web

Client-Server Peer-to-peer

Reliable and ordered WebSocket
(also WebTransport)

RTCDataChannel

or

P2P QUIC

Reliable but unordered

WebTransport
Unreliable and

unordered

41

P2P QUIC as a Media Transport

P2P QUIC isn’t just about transport of data. Currently, it is
under consideration as the next generation media transport
within the IETF:

● RTP over QUIC (RoQ, AVTCORE WG): Transport of realtime
media (RTP/RTCP)
○ Protocol specification
○ Github repo

● Media over QUIC (MoQ, MoQ WG): Transport of streaming media
(e.g. CMAF)
○ MoQ Transport specification

42

https://mengelbart.github.io/rtp-over-quic-draft/draft-ietf-avtcore-rtp-over-quic.html
https://github.com/mengelbart/rtp-over-quic
https://datatracker.ietf.org/doc/draft-lcurley-moq-transport/

The Stack

NETWORK (IP)

TCP

TLS (optional)

HTTP1.x/2

NETWORK (IP)

UDP

ICE, STUN,TURN

DTLS

SCTP
SRTP

Data Media

NETWORK (IP)

UDP

HTTP/3

TLS 1.3

QUIC

HTTP1.x/2 HTTP/3 WebRTC

NETWORK (IP)

UDP

TLS 1.3QUIC (streams +
datagrams)

WebTransport

Http3Transport

TCP

TLS

HTTP/2 HTTP/3
(streams + datagrams)

WEBTRANSPORT

Http2Transport

43

NETWORK (IP)

UDP

ICE, STUN,TURN

QUIC
(streams + datagrams)

Data Media

P2P QUIC

TLS 1.3

Multiplexing and P2P QUIC
● Data-only

○ P2P QUIC used for data exchange, with STUN/TURN for NAT traversal and
RTP/RTCP used for media.
■ Example: P2P QUIC substituting for WebRTC data channel.
■ Requires multiplexing STUN/TURN/DTLS/RTP/RTCP/QUIC on the same

socket (defined in RFC 7983bis, now in RFC Editor Queue)
● Data + Media

○ P2P QUIC used to carry media as well as data.
■ Example: RoQ or MoQ + data (+ signaling?)
■ Requires multiplexing of STUN/TURN/QUIC on the same socket

(defined in RFC 7983bis)
■ Requires a mechanism for multiplexing of data and media within

QUIC.

44

RFC 9443: Multiplexing
QUIC/STUN/TURN/RTP/RTCP/DTLS

45

https://datatracker.ietf.org/doc/html/rfc9443

Establishing a P2P QUIC Connection

46

1. STUN/TURN/ICE
2. QUIC connection establishment

a. Exchange of self-signed certificates, ALPN (“q2q”) and transport settings.
i. Support for QUIC datagrams required (max_datagram_frame_size

parameter, value=0x20)

ii. Endpoints that wish to demultiplex QUIC MUST NOT send the
grease_quic_bit transport parameter, described in [RFC9287].

iii. Adjusting the frequency of QUIC ACKs:
1. draft-ietf-quic-ack-frequency

iv. Support for arrival timestamps, as proposed in:
1. Draft-smith-quic-receive-ts
2. draft-huitema-quic-ts

v. Support for QUIC timestamps highly desirable.
vi. ICE used for connection migration, so no need for QUIC connection migration.

https://datatracker.ietf.org/doc/html/rfc9287

A bit of history…
● Peer-to-peer QUIC began life as an extension to ORTC API

(a decomposed, SDP-free version of WebRTC)
○ Has "standalone" RTCIceTransport for ICE

● RTCQuicTransport+RTCIceTransport were implemented in a
Chrome Origin Trial in 2019
○ Video: P2P QUIC Origin Trial
○ Developer blog

● After the Origin Trial, P2P QUIC morphed into WebTransport, a
client/server API now shipping in Chromium.

47

https://www.youtube.com/watch?v=964yH8GoD-I
https://developer.chrome.com/blog/rtcquictransport-api/

RTCQuicTransport Object Model

48

P2P QUIC Interface
https://w3c.github.io/p2p-webtransport/

49

https://w3c.github.io/p2p-webtransport/

P2P QUIC API (cont’d)

50

Initiator Example

51

 mySignaller.mySendInitiate({
 ice: iceGatherer.getLocalParameters(),
 quic: quicParameters,
 }, function(remote) {
 // Create the ICE and QUIC transports
 var iceTransport = new RTCIceTransport(iceGatherer);
 iceTransport.start(iceGatherer, remote.ice, RTCIceRole.controlling);
 iceTransports.push(iceTransport);
 // Construct a RTCQuicTransport object with the same certificate and fingerprint
 // as in the Offer so that the remote peer can verify it.
 var quicTransport = new RTCQuicTransport(iceTransport, certs);
 quicTransport.start(remote.quic);
 quicTransports.push(quicTransport);

 // ... Use WebCodecs to encode/decode media sent over the RTCQuicTransport
 });

}

Responder Example

52

 / Prepare to handle remote candidates
 mySignaller.onRemoteCandidate = function(remote) {
 ice.addRemoteCandidate(remote.candidate);
 };

 mySignaller.mySendAccept({
 ice: iceGatherer.getLocalParameters(),
 quic: quic.getLocalParameters()
 });

 // Start the ICE transport with an implicit gather policy of "all"
 ice.start(iceGatherer, remote.ice, RTCIceRole.controlled);

 // Start the QUIC transport
 quic.start(remote.quic);

 // Use WebCodecs to encode/decode media sent over partially reliable QUIC streams or datagrams
}

P2P QUIC Resources
● Videos

○ Introduction to WebTransport
○ P2P QUIC Origin Trial (2019)

● Protocol specifications
○ QUIC multiplexing with STUN/TURN/RTP/RTCP/DTLS
○ RTP over QUIC (RoQ)

● API specifications
○ ORTC API
○ P2P QUIC API
○ WebRTC-ICE API

● Blogs
○ P2P QUIC Origin trial announcement (2019)

● Implementations
○ Pion over QUIC
○ RTP over QUIC
○ P2P QUIC (RUST)

53

https://www.rtc-conference.com/2022/presentation/?hid=299
https://www.youtube.com/watch?v=964yH8GoD-I
https://datatracker.ietf.org/doc/html/draft-ietf-avtcore-rfc7983bis
https://mengelbart.github.io/rtp-over-quic-draft/draft-ietf-avtcore-rtp-over-quic.html
https://draft.ortc.org/
https://w3c.github.io/p2p-webtransport/
https://w3c.github.io/webrtc-ice/
https://developer.chrome.com/blog/rtcquictransport-api/
https://github.com/pion/quic
https://github.com/mengelbart/rtp-over-quic
https://docs.rs/quic-p2p/latest/quic_p2p/

Discussion (End Time: 09:30)
●

54

Local Peer-to-Peer API

RtpTransport (Peter Thatcher)
Start Time: 09:30 AM
End Time: 09:50 AM

55

What was RtpTransport, again?

Today, we'll focus on "Use Case 1": Custom Packetization

(https://github.com/w3c/webrtc-rtptransport/blob/main/explainer-use-case-1.md)

● (Reminder: we were all on board with a "piecemeal" approach)

Relevant WebRTC-Extended Use Cases:

● Section 2.3: Video Conferencing with a Central Server
● Section 3.2.1: Game streaming
● Section 3.2.2: Low latency Broadcast with Fanout
● Section 3.5: Virtual Reality Gaming

https://github.com/w3c/webrtc-rtptransport/blob/main/explainer-use-case-1.md
https://www.w3.org/TR/webrtc-nv-use-cases/#videoconferencing*
https://www.w3.org/TR/webrtc-nv-use-cases/#game-streaming
https://www.w3.org/TR/webrtc-nv-use-cases/#auction
https://www.w3.org/TR/webrtc-nv-use-cases/#vr*

What You Can Accomplish With RtpTransport (Use Case 1)

● Customize RTP header extensions
○ Send and receive customized RTP header extensions
○ Send and receive custom RTP header extensions

● Customize codecs
○ Encode and packetize with a custom codec (WASM)
○ Depacketize and decode with a custom codec (WASM)
○ Encode and packetize with WebCodecs
○ Depacketize and decode with WebCodecs

● Implement a custom jitter buffer
● Implement custom FEC
● Do custom bitrate allocation

Example: Send customized RTP header extension (audio level)

const [pc, rtpSender] = await customPeerConnectionWithRtpSender();
const levelGenerator = new CustomAudioLevelCalculator();
const rtpSendStream = await rtpSender.replaceSendStreams()[0];
rtpSendStream.onpacketizedrtp = () => {
 const rtpPacket = rtpSendStream.readPacketizedRtp();
 rtpPacket.audioLevel = levelGenerator.generate(rtpPacket);
 rtpSendStream.sendRtp(rtpPacket);
};

Example: Send custom RTP header extension

// TODO: Negotiate headerExtensionCalculator.uri in SDP

const [pc, rtpSender] = await customPeerConnectionWithRtpSender();

const headerExtensionGenerator = new CustomHeaderExtensionGenerator();

const rtpSendStream = await rtpSender.replaceSendStreams()[0];

rtpSendStream.onpacketizedrtp = () => {

 for (const rtpPacket of rtpSendStream.readPacketizedRtp()) {

 rtpPacket.setHeaderExtension({

 uri: headerExtensionGenerator.uri,

 value: headerExtensionGenerator.generate(rtpPacket),

 });

 rtpSendStream.sendRtp(rtpPacket)

 }

};

Example: Receive custom RTP header extension

// TODO: Negotiate headerExtensionProcessor.uri in SDP
const [pc, rtpReceiver] = await customPeerConnectionWithRtpReceiver();
const headerExtensionGenerator = new CustomHeaderExtensionGenerator();
const rtpReceiveStream = await videoRtpReceiver.replaceReceiveStreams()[0];
rtpReceiveStream.onreceivedrtp = () => {
 for (const rtpPacket of rtpReceiveStream.readReceivedRtp()) {
 for (const headerExtension of rtpPacket.headerExtensions) {
 if (headerExtension.uri == headerExtensionProcessor.uri) {
 headerExtensionProcessor.process(headerExtension.value);
 }
 }
 }
 rtpReceiveStream.receiveRtp(rtpPacket);
}

Example: Send and packetize with custom codec (WASM)

const [pc, rtpSender] = await customPeerConnectionWithRtpSender();
const source = new CustomSource();
const encoder = new CustomEncoder();
const packetizer = new CustomPacketizer();
const rtpSendStream = await rtpSender.replaceSendStreams()[0];
for await (const rawFame in source.frames()) {
 encoder.setTargetBitrate(rtpSendStream.allocatedBandwidth);
 const encodedFrame = encoder.encode(rawFrame);
 const rtpPackets = packetizer.packetize(encodedFrame);
 for (const rtpPacket of rtpPackets) {
 rtpSendStream.sendRtp(rtpPackets);
 }
}

Example: Receive with custom codec (WASM) and jitter buffer

const [pc, rtpReceiver] = await customPeerConnectionWithRtpReceiver();
const jitterBuffer = new CustomJitterBuffer();
const renderer = new CustomRenderer();
const rtpReceiveStream = await videoRtpReceiver.replaceReceiveStreams()[0];
rtpReceiveStream.onreceivedrtp = () => {
 const rtpPackets = rtpReceiveStream.readReceivedRtp();
 jitterBuffer.injectRtpPackets(rtpPackets);
}
for await (decodedFrame in jitterBuffer.decodedFrames()) {
 renderer.render(decodedFrame)
}

Example: Receive audio with custom codec (WASM)

const [pc, rtpReceiver] = await customPeerConnectionWithRtpReceiver();
const depacketizer = new CustomDepacketizer();
const decoder = new CustomDecoder();
const packetizer = new CustomL16Packetizer();
const rtpReceiveStream = await videoRtpReceiver.replaceReceiveStreams()[0];
rtpReceiveStream.onrtpreceived = () => {
 const rtpPackets = rtpReceiveStream.readReceivedRtp();
 const encodedFrames = depacketizer.depacketize(rtpPackets);
 const decodedFrames = decoder.decode(encodedFrames);
 for (rtpPackets of packetizer.toL16(decodedFrames)) {
 rtpReceiveStream.receiveRtp(rtpPackets);
 }
}

Example: Send and packetize with WebCodecs

const [pc, rtpSender] = await customPeerConnectionWithRtpSender();
const source = new CustomSource();
const packetizer = new CustomPacketizer();
const rtpSendStream = await rtpSender.replaceSendStreams()[0];
const encoder = new VideoEncoder({
 output: (chunk) => {
 let rtpPackets = packetizer.packetize(chunk);
 for packet in rtpPackets {
 rtpSendStream.sendRtp(rtpPackets);
 }
 },
 …
});

Example: Send and packetize with WebCodecs (cont’d)

for await (const rawFrame of source.frames()) {
 encoder.configure({
 ...
 tuning: {
 bitrate: rtpSendStream.allocatedBandwidth;
 ...
 }
 });
 encoder.encode(rawFrame);
}

Example: Receive video with WebCodecs and custom jitter buffer

const [pc, rtpReceiver] = await customPeerConnectionWithRtpReceiver();
const jitterBuffer = new CustomJitterBuffer();
const renderer = new CustomRenderer();
const rtpReceiveStream = await rtpReceiver.replaceReceiveStreams()[0];
const decoder = new VideoDecoder({
 output: (chunk) => {
 renderer.render(chunk);
 }, …
});

rtpReceiveStream.onrtpreceived = () => {
 const rtpPackets = rtpReceiveStream.readReceivedRtp();
 jitterBuffer.injectRtpPackets(rtpPackets);
}
for await (encodedFrame in jitterBuffer.encodedFrames()) {
 decoder.decode(endcodedFrame)
}

Example: Receive audio with WebCodecs

const rtpReceiveStream = …;
const depacketizer = new CustomDepacketizer();
const packetizer = new CustomL16Packetizer();
const decoder = new AudioDecoder({
 output: (chunk) => {
 const rtpPackets = packetizer.toL16(chunk);
 for packet in rtpPackets {
 rtpRecieveStream.receiveRtp(rtpPackets);
 }
 }, …
});

rtpReceiveStream.onrtpreceived = () => {
 const rtp = rtpReceiveStream.readReceivedRtp();
 const encodedFrames = depacketizer.depacketize(rtp);
 decoder.decode(encodedFrames);
}

Big Remaining Question: What about Workers?

● We want sending and receiving of packets to be able to happen on a worker
○ But is that "can be on a worker" or "must be on a worker"?

○ In other words, is it "Transferable" or "Dedicated Worker"

More Stuff

● More examples in Use Case 1:

(https://github.com/w3c/webrtc-rtptransport/blob/main/explainer-use-case-1.md)

○ Custom FEC

○ Custom bitrate allocation

● More great stuff in Use Case 2:

(https://github.com/w3c/webrtc-rtptransport/blob/main/explainer-use-case-2.md)

○ Custom congestion control

○ Custom bandwidth estimation

○ Custom probing and pacing

https://github.com/w3c/webrtc-rtptransport/blob/main/explainer-use-case-1.md
https://github.com/w3c/webrtc-rtptransport/blob/main/explainer-use-case-2.md

Feedback

(Reminder: we were all on board with this "piecemeal" approach)

● Are all of your (relevant) use cases covered?
○ If not, file an issue at https://github.com/w3c/webrtc-rtptransport/issues

● Would you like to comment on the question of Workers?
○ Go to https://github.com/w3c/webrtc-rtptransport/issues/33

● Would you like to comment on the API shape while maintaining perf
○ Go to https://github.com/w3c/webrtc-rtptransport/issues/20

● Have any other thoughts/ideas?
○ File an issue at https://github.com/w3c/webrtc-rtptransport/issues

https://github.com/w3c/webrtc-rtptransport/issues
https://github.com/w3c/webrtc-rtptransport/issues/33
https://github.com/w3c/webrtc-rtptransport/issues/20
https://github.com/w3c/webrtc-rtptransport/issues

Discussion (End Time: 09:50)
●

71

Wrapup and Next Steps
Start Time: 09:50 AM
End Time: 10:00 AM

72

Next Steps
● Content goes here

73

Thank you

Special thanks to:

WG Participants, Editors & Chairs

74

