
W3C WebRTC
WG Meeting

March 26, 2024
8 AM - 10 AM

Chairs: Bernard Aboba
Harald Alvestrand
Jan-Ivar Bruaroey 1

W3C WG IPR Policy
● This group abides by the W3C Patent Policy

https://www.w3.org/Consortium/Patent-Policy/
● Only people and companies listed at

https://www.w3.org/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

2

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!
● Welcome to the March 2024 interim meeting

of the W3C WebRTC WG, at which we will
cover:
○ WebRTC-PC, Reactions, Mediacapture Specifications,

RTCRtpSenderEncodedSource, WebRTC Extended Use
Cases

● Future meetings:
○ April 23
○ May 21
○ June 18
○ July 16

3

https://www.w3.org/2011/04/webrtc/wiki/Main_Page#Meetings
https://www.w3.org/2011/04/webrtc/wiki/April_23_2024
https://www.w3.org/2011/04/webrtc/wiki/May_21_2024
https://www.w3.org/2011/04/webrtc/wiki/June_18_2024
https://www.w3.org/2011/04/webrtc/wiki/July_16_2024

About this Virtual Meeting
● Meeting info:

○ https://www.w3.org/2011/04/webrtc/wiki/March_26_2024

● Link to latest drafts:
○ https://w3c.github.io/mediacapture-main/
○ https://w3c.github.io/mediacapture-extensions/
○ https://w3c.github.io/mediacapture-image/
○ https://w3c.github.io/mediacapture-output/
○ https://w3c.github.io/mediacapture-screen-share/
○ https://w3c.github.io/mediacapture-record/
○ https://w3c.github.io/webrtc-pc/
○ https://w3c.github.io/webrtc-extensions/
○ https://w3c.github.io/webrtc-stats/
○ https://w3c.github.io/mst-content-hint/
○ https://w3c.github.io/webrtc-priority/
○ https://w3c.github.io/webrtc-nv-use-cases/
○ https://github.com/w3c/webrtc-encoded-transform
○ https://github.com/w3c/mediacapture-transform
○ https://github.com/w3c/webrtc-svc
○ https://github.com/w3c/webrtc-ice

● Link to Slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● The meeting is (still) being recorded. The recording will be public.
● Volunteers for note taking? 4

https://www.w3.org/2011/04/webrtc/wiki/February_20_2024#WebRTC_WG_Virtual_Interim
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-extensions/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions/
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/mst-content-hint/
https://w3c.github.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://github.com/w3c/webrtc-encoded-transform
https://github.com/w3c/mediacapture-transform
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://www.w3.org/2011/04/webrtc/wiki/March_26_2024#WebRTC_WG_Virtual_Interim
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

W3C Code of Conduct
● This meeting operates under W3C Code of Conduct

(updated!)

● We're all passionate about improving WebRTC and the
Web, but let's all keep the conversations cordial and
professional

5

https://www.w3.org/Consortium/cepc/

Virtual Interim Meeting Tips
This session is (still) being recorded

● Click to get into the speaker queue.
● Click to get out of the speaker queue.
● Please wait for microphone access to be granted before

speaking.
● If you jump the speaker queue, you will be muted.
● Please use headphones when speaking to avoid echo.
● Please state your full name before speaking.
● Poll mechanism may be used to gauge the “sense of the

room”.

6

Understanding Document Status
● Hosting within the W3C repo does not imply adoption by the

WG.
○ WG adoption requires a Call for Adoption (CfA) on the

mailing list.
● Editor’s drafts do not represent WG consensus.

○ WG drafts do imply consensus, once they’re confirmed
by a Call for Consensus (CfC) on the mailing list.

○ Possible to merge PRs that may lack consensus, if a
note is attached indicating controversy.

7

Issues for Discussion Today
● 08:10 - 08:20 AM WebRTC-PC (Tim Panton)
● 08:20 - 08:35 AM Reactions (Youenn)
● 08:35 - 09:15 Mediacapture Specifications (Jan-Ivar)
● 09:15 - 09:35 AM RTCRtpSenderEncodedSource (Guido)
● 09:35 - 09:50 AM WebRTC Extended Use Cases (Sun, Shridhar)
● 09:50 - 10:00 AM Wrapup and Next Steps (Chairs)

Time control:
● A warning will be given 2 minutes before time is up.
● Once time has elapsed we will move on to the next item.

8

#

WebRTC-PC
Start Time: 08:10 AM
End Time: 08:20 AM

9

For Discussion Today
● Issue 2944: Alternative storage for RTCCertificates needed (Tim Panton)

10

https://github.com/w3c/webrtc-pc/issues/2944

RTCCertificates in the Wild

● Medium term identity persistence
● Between peers
● No need for centralized identity service
● Useful in outages
● Or IoT reconnections

● Facilitates ToFU.

11

RTCCertificate Problems

● Valid for up to 1 year
● But Expiry unchecked!
● Can be stored in indexedDB
● Irretrievably lost when indexedDB wiped
● Safari wipes indexedDB after 1 week
● Users regularly wipe storage to get better prices
● No export or backup mechanism provided

(IDP use-case never took off…)

12

Proposal 1

Save to indexedDB store (borrowed from MediaKeySession) :

RTCCertificate.load(fingerprint)
RTCCertificate.store(certificate)

This assumes the app knows the fingerprint - but that can be stored in
a URL param.

13

Proposal 2

Export to blob allowing the user/app to save it:

RTCCertificate.exportPEM(certificate)
RTCCertificate.importPEM(blob)

This goes against the original security design where keys are never
exposed in javascript.
However all the E2E implementations have moved beyond that design
Time to revisit?

14

Other proposals ?

Other ideas welcome.
(e.g. leverage client certificates somehow :
https://developer.chrome.com/docs/extensions/reference/api/platformK
eys
Perhaps ?)

15

https://developer.chrome.com/docs/extensions/reference/api/platformKeys
https://developer.chrome.com/docs/extensions/reference/api/platformKeys

Discussion (End Time: 08:20)
●

16

Reactions (Youenn)
Start Time: 08:20 AM
End Time: 08:35 AM

17

For discussion today
● Mediacapture-extensions #118: Should web applications be aware of

reaction effects added by OS to camera feeds?

18Not in scope In scope

https://github.com/w3c/mediacapture-extensions/issues/118

Mediacapture-extensions#118

● Reactions are fun and useful in many contexts
○ Reactions may not be useful in specific contexts, like telehealth

● Web applications want to
○ Provide hints to the UA that gesture reactions are useful or not

■ In scope
○ Be aware that reactions may be added upon user gestures

■ In scope
○ Be aware that reactions are added to specific video frames

■ Not in scope today (could be a future metadata)

19

https://github.com/w3c/mediacapture-extensions/issues/118

Mediacapture-extensions#118

● Proposed solution
○ Use a boolean constraint/capability/setting for gesture reactions

■ Similar to background blur solution
○ The constraint mechanism is flexible, as it allows:

■ UA to expose whether reactions are on or off
■ UA to expose whether reactions can be turned on/off by web

application
■ Web application to provide to UA whether reactions are desired

○ https://github.com/w3c/mediacapture-extensions/pull/141
■ Constraint name under discussion

● Is the WG ok with providing a solution to this problem
○ If so, is the WG OK with this solution?

20

https://github.com/w3c/mediacapture-extensions/issues/118
https://github.com/w3c/mediacapture-extensions/pull/141

Discussion (End Time: 08:35)
●

21

Mediacapture Specifications (Jan-Ivar)
Start Time: 08:35 AM
End Time: 09:15 AM

22

For discussion today
● Mediacapture-main #984: Clarify each source is responsible for specifying

mute/unmute/ended and constraints behavior

● Mediacapture-record #194: mimeType ambiguity:
"video/webm;codecs=vp8" means?

23

https://github.com/w3c/mediacapture-main/issues/984
https://github.com/w3c/mediacapture-record/issues/194

Issue 984: Clarify each source is responsible for specifying
mute/unmute/ended and constraints behavior

24

This is a spec cleanup to remove any implicitly inherited behaviors, requiring each spec that
defines a source of new MediaStreamTracks to follow § 17.4 Defining a new source of
MediaStreamTrack, specifically:

https://github.com/w3c/mediacapture-main/issues/984
http://w3c.github.io/mediacapture-main/#defining-a-new-source-of-mediastreamtrack
http://w3c.github.io/mediacapture-main/#defining-a-new-source-of-mediastreamtrack

Issue 984: Clarify each source is responsible for specifying
mute/unmute/ended and constraints behavior

25

https://github.com/w3c/mediacapture-main/issues/984
https://github.com/w3c/mediacapture-screen-share/issues/298
https://github.com/w3c/mediacapture-fromelement/issues/98
https://github.com/w3c/mediacapture-fromelement/issues/99
https://github.com/w3c/mediacapture-transform/issues/109
https://github.com/WebAudio/web-audio-api/issues/2571
https://github.com/w3c/webrtc-pc/issues/2942

Issue 298: Review mute/unmute/ended and constraints on
tracks from getDisplayMedia()
✅ § 5.2 Closed and Minimized Display Surfaces specifies mute/unmute/ended.

A display surface that is being shared may temporarily or permanently become inaccessible to the application because of actions taken by the
operating system or user agent. What makes a display surface considered inaccesible is outside the scope of this specification, but examples
MAY include a monitor disconnecting, window or browser closing or becoming minimized, or due to an incoming call on a phone.

Above definition seems to support the "togglescreenshare" UA toggle in mediasession #306

✅ § 5.4 Constrainable Properties for Captured Display Surfaces covers constraints.

Proposal: close as reviewed, optionally with a PR to include UA privacy toggle among examples.

https://github.com/w3c/mediacapture-screen-share/issues/298
https://w3c.github.io/mediacapture-screen-share/#hidden-display-surfaces
https://w3c.github.io/mediacapture-screen-share/#dfn-display-surface
https://w3c.github.io/mediacapture-screen-share/#dfn-display-surface
https://w3c.github.io/mediacapture-screen-share/#dfn-monitor
https://w3c.github.io/mediacapture-screen-share/#dfn-window
https://w3c.github.io/mediacapture-screen-share/#dfn-browser
https://github.com/w3c/mediasession/issues/306
https://w3c.github.io/mediacapture-screen-share/#constrainable-properties

Issue 2942: Review mute/unmute/ended and constraints on
RTCRtpReceiver's track.
✅ § 9.3 MediaStreamTrack specifies mute from BYE and sRD(inactive|sendonly), unmute from
incoming RTP, and ended from transceiver stop sending and receiving,

✅ § 9.3.1 MediaTrackSupportedConstraints, MediaTrackCapabilities, MediaTrackConstraints and
MediaTrackSettings covers constraints.

State of implementations (from dup #2915): ✅ Bugs filed on all UA-specific behavior

● Firefox appears to follow § 9.3 MediaStreamTrack
● Safari deviates by

○ unmuting after 1 ms, likely ahead of RTP reception, compared to ~32 ms in Firefox (webkit 209242)
○ muting tracks on stopped transceiver (webkit bug?)

● Chrome deviates by
○ unmuting ahead of RTP / sRD (crbug 1295295)
○ muting video (only!) track ~1 second after sender.track.stop() (crbug 941740)

Proposal: close as reviewed and close #2915. No implementation-defined behavior allowed.

https://github.com/w3c/webrtc-pc/issues/2942
https://w3c.github.io/webrtc-pc/#mediastreamtrack-network-use
https://w3c.github.io/webrtc-pc/#dfn-stop-sending-and-receiving
https://w3c.github.io/webrtc-pc/#mediatracksupportedconstraints-mediatrackcapabilities-mediatrackconstraints-and-mediatracksettings
https://w3c.github.io/webrtc-pc/#mediatracksupportedconstraints-mediatrackcapabilities-mediatrackconstraints-and-mediatracksettings
https://github.com/w3c/webrtc-pc/issues/2915
https://w3c.github.io/webrtc-pc/#mediastreamtrack-network-use
https://bugs.webkit.org/show_bug.cgi?id=209242
https://bugs.chromium.org/p/chromium/issues/detail?id=1295295
https://crbug.com/941740
https://github.com/w3c/webrtc-pc/issues/2915

Issue 109: Review mute/unmute/ended and constraints on new
VideoTrackGenerator().track
✅ Mute/unmute is controlled by VideoTrackGenerator's muted attribute:

 // worker.js
 const source = new VideoTrackGenerator();
 source.muted = true;

 The source.track is ended when the source.writable is closed.

✅ § 2.2.5.2. Constrainable properties covers constraints.

Proposal: close as reviewed.

https://github.com/w3c/mediacapture-transform/issues/109
https://w3c.github.io/mediacapture-transform/#dom-videotrackgenerator-muted
https://w3c.github.io/mediacapture-transform/#closewritable
https://w3c.github.io/mediacapture-transform/#generator-constrainable-properties

Issue 98: Review mute/unmute/ended and constraints on
tracks from element.captureStream()

 ✅ element.captureStream specifies when to end a track:

❌ For mute/unmute terms like "available" (reactive) and "accessible" (same-origin) content.

Should be clarified. Intent seems to be to carry forward state of MSTs in video.srcObject.

❌ No mention of constraints. See define behaviors of ConstrainablePattern Interfaces #48

Related issues:

● Inconsistency: Taint, not mute cross-origin element tracks #83

Proposal: PR to clarify “available content” in element playback terms, for srcObject = MS and
otherwise. No implementation-defined behavior allowed.

https://github.com/w3c/mediacapture-fromelement/issues/98
https://w3c.github.io/mediacapture-fromelement/#dom-htmlmediaelement-capturestream
https://github.com/w3c/mediacapture-fromelement/issues/48
https://github.com/w3c/mediacapture-fromelement/issues/83

Issue 99: Review mute/unmute/ended and constraints on
tracks from canvas.captureStream()
❌ canvas.captureStream only mentions mute once related to no longer being origin-clean
 (though would ended be more appropriate? Or can dirty canvases be cleaned?)

❌ It doesn't say anything about ended or unmute. It should clarify if events are fired. No mention
of constraints.

Relevant open issues found:

● Clarify if CanvasCaptureMediaStreamTrack mute, unmute, and ended events are expected to
be fired #82

Proposal: Close as dup of #82. No implementation-defined behavior allowed.

https://github.com/w3c/mediacapture-fromelement/issues/99
https://w3c.github.io/mediacapture-fromelement/#dom-htmlcanvaselement-capturestream
https://github.com/w3c/mediacapture-fromelement/issues/82
https://github.com/w3c/mediacapture-fromelement/issues/82

Issue 2571: Review mute/unmute/ended and constraints on
track in audioContext.createMediaStreamDestination().stream
✅ No mention of muted, ended or constraints on MediaStreamAudioDestinationNode's track.

✅ If a MediaStreamAudioDestinationNode's track is never muted or ended, and cannot be
constrained (with applyConstraints), this is now the default behavior, but it might be good to call
this out if intentional. E.g. something like "The MediaStreamAudioDestinationNode's stream's track
is never muted or ended, and has no constraints."

No action: Leave open. Different Working Group.

https://github.com/WebAudio/web-audio-api/issues/2571

Issue 194: mimeType ambiguity: "video/webm;codecs=vp8"
means?

Works in Chrome but throws NotSupportedError in Firefox because audio codec not mentioned:

 const stream = await navigator.mediaDevices.getUserMedia({video: true, audio: true});
 const rec = new MediaRecorder(stream, {mimeType: "video/webm;codecs=vp8"}); // no + ",opus”
 rec.start();

mimeType overriding browsers’ default codecs seems intuitive. But spec and Firefox also treat it as
an input selector, which seems redundant, when better ways to exclude audio exist:

 new MediaRecorder(new MediaStream(...stream.getVideoTracks()), options); // no audio

The latter works the same for default and modified codecs, IOW input filtering and codec
overriding are orthogonal, which seems better.

Proposal: Align spec with Chrome

https://github.com/w3c/mediacapture-record/issues/194

Discussion (End Time: 09:15)
●

33

RTCRtpSenderEncodedSource (Guido)
Start Time: 09:15 AM
End Time: 09:35 AM

34

Scenario

35

Server

● A few nodes read from a server, thousands of nodes in a P2P system
● P2P network topology with redundant paths for reliability
● Nodes are generally unreliable (can join/leave at any time)
● Use case: Glitch-free forwarding from redundant paths (Fan-in and Fan-out)

Proposal - RTCRtpSenderEncodedSource
// main.js

const worker = new Worker('worker.js');

const encodedSource = new RTCRtpSenderEncodedSource(worker, {name: "encodedSource"})

// Let relayPc be the PC used to relay frames to the next peer.

const [sender] = relayPc.getSenders();

await sender.replaceTrack(encodedSource);

// Let recvPc1, recvPc2 be the receiving PCs.

recvPc1.ontrack = ({receiver}) =>

 receiver.transform = new RTCRtpScriptTransform(worker, {name: "receiverTransform1"});

recvPc2.ontrack = ({receiver}) =>

 receiver.transform = new RTCRtpScriptTransform(worker, {name: "receiverTransform2"});

36

Proposal - RTCRtpSenderEncodedSource
// worker.js

let sourceWriter;

onrtcsenderencodedsource = ({controller: {writable}}) => {

 sourceWriter = writable.getWriter();

}

onrtctransform = async ({transformer: {readable, writable, options}}) => {

 await readable.pipeThrough(new TransformStream({transform})).pipeTo(writable);

 function transform(frame, controller) {

 if (shouldForward(frame)) { // application-defined (e.g., drop duplicates)

 const newFrame = new RTCRtpEncodedVideoFrame(frame, getUnifiedMetadata(frame));

 sourceWriter.write(newFrame);

 }

 controller.enqueue(frame);

 }

}
37

API Shape (see webrtc-extensions #198)
[Exposed=Window] interface RTCRtpSenderEncodedSource {

 constructor(Worker worker, optional any options, optional sequence<object> transfer)

};

[Exposed=DedicatedWorker] interface RTCRtpSenderEncodedSourceController {

 WritableStream writable; // Need congestion/error API

};

partial interface DedicatedWorkerGlobalScope {

 attribute EventHandler onrtcsenderencodedsource;

}

partial interface RTCRtpSender {

 undefined replaceTrack(RTCRtpSenderEncodedSource source);

 readonly attribute RTCRtpSenderEncodedSource encodedSource;

}
38

https://github.com/w3c/webrtc-extensions/pull/198

Pros and cons
● Same pattern as encoded transform.

○ Makes it easy to evolve both in parallel
○ Can use same API for bandwidth congestion (see encoded-transform

PR #224)
● Builds on existing APIs proven in production
● Good match for SFU-like operations that are frame centric:

○ Zero-timeout, glitch-free forwarding of frames from redundant paths
○ Drop frames from certain layers in response to bandwidth issues

● Requires waiting for a full frame, which introduces extra latency compared
with a packet-based API

39

Discussion (End Time: 09:35)

40

● Do we have rough consensus on:
○ Introducing RTCRtpSenderEncodedSource
○ Constructors for RTCEncodedVideoFrame and

RTCEncodedVideoFrame to create new frames with custom metadata
(encoded-transform #223)

https://github.com/w3c/webrtc-encoded-transform/pull/223

WebRTC-Extended Use Cases (Sun, Shridhar)
Start Time: 09:35 AM
End Time: 09:50 AM

41

PR#118: Bandwidth feedback Speed(Configurable RTCP
transmission interval)

42

● Proposal:
○ To address the need for precise bandwidth management, we

propose the implementation of a configurable control knob within
the application. This control will enable the application to manage
the timing of notifications related to bandwidth changes, specifically
those concerning packet loss and packet reception timing.

https://github.com/w3c/webrtc-nv-use-cases/pull/118

PR#118: Bandwidth feedback Speed(Configurable RTCP
transmission interval)

43

● Implementation details - not to add this to the PR:
○ Directional Control: The application will have the ability to adjust the

notification delay in both directions, either to expedite or defer the
notification of bandwidth changes.

○ Degree of Control: The application will be able to specify the exact
delay amount, allowing for granular control over the timing of the
notifications. This could be defined in terms of time (e.g., milliseconds)
or synchronized with RTP timestamp changes (Detailed syntax has
been proposed to IETF).

https://github.com/w3c/webrtc-nv-use-cases/pull/118
https://datatracker.ietf.org/doc/draft-majali-avtcore-rtcp-fb-timing-cfg/

PR#118: Bandwidth feedback Speed(Configurable RTCP
transmission interval)

44

● Benefits - not to add this to the PR:
○ Enhanced Responsiveness: By controlling the notification delay, the

application can better manage its response to bandwidth fluctuations,
leading to improved performance and user experience.

○ Customizable feedback interval: Different applications may require
different levels of sensitivity to bandwidth changes. This control knob
will allow for tailored configurations that best suit each application’s
needs.

■ Ex: L4S(RFC 9330) needs interval to be configured to 25ms or lower.

https://github.com/w3c/webrtc-nv-use-cases/pull/118

PR#118: Bandwidth feedback Speed(Configurable RTCP
transmission interval)

45

● Discussion point:
○ The addition of this control knob will significantly improve the

application’s ability to respond to network conditions in a timely and
efficient manner, ultimately enhancing overall service quality.

○ Actual implementation details may not be the scope of this
requirements but we are open to continue discussion on it through
W3C working group discussions. Could we submit this change?

https://github.com/w3c/webrtc-nv-use-cases/pull/118

PR#129: video decoding recovery after packet loss

46

● Proposal:
○ The application must be able to control video decoding to continue

even after a frame-loss without waiting for a key frame.
● Open Question - not to add this to the PR:

○ For which codecs and which platforms do we have experience with
video loss recovery without a keyframe that has proved to be
helpful? (Not as a suggestion to add this to the PR, but because I
wonder how well this works in practice)

https://github.com/w3c/webrtc-nv-use-cases/pull/118

47

● NVIDIA GeForce NOW evaluation - not to add this to the PR
○ Platforms: Native implementation on Windows and Mac.
○ Codecs: H.264, HEVC and AV1
○ Utilizes a custom protocols for client-server communication
○ Benefits: Lower frame sizes compared to IDR(Instantaneous

Decoder Refresh), lower bits on network, better quality.
■ Ref> Meta shared that they applied the LTR(Long Term Reference) over H.264

on Messenger and showed 37% reduction of the usage of the key frames: link

PR#129: video decoding recovery after packet loss

https://atscaleconference.com/rtc-scale-2024/?tab=0&item=11#agenda-item-11
https://github.com/w3c/webrtc-nv-use-cases/pull/118

48

● Discussion point:
○ In cloud gaming scenarios, particularly one-to-one communication,

we have observed feasible improvements in video streaming by
native implementation and are now seeking industry consensus to
extend these improvements to browser-based implementations.

○ Actual implementation details may not be the scope of this
requirements but we are open to continue discussion on it through
W3C working group discussions. Could we submit this change?

PR#129: video decoding recovery after packet loss

https://github.com/w3c/webrtc-nv-use-cases/pull/118

Discussion (End Time: 09:50)
●

49

Wrapup and Next Steps
Start Time: 09:50 AM
End Time: 10:00 AM

50

Next Steps
● Content goes here

51

Thank you

Special thanks to:

WG Participants, Editors & Chairs

52

