
Web features, Baseline status,
and standardization signals

W3C Breakouts Day 2024
12 March 2024

François Daoust - Patrick Brosset - Kadir Topal

Welcome to the breakout!

🗣 Presentation is a means to an end. Discussion is key!

🔇 Please mute when you're not speaking.

✋ Please use “Raise hand” feature in Zoom to raise a question or comment.

⏹ Discussion will not be recorded.

📝 Discussion notes taken on IRC, irc.w3.org, channel #web-features.

🫡 Breakout operated under W3C’s Code of Ethics and Professional Conduct.

https://www.w3.org/Consortium/cepc/

Web developers 🥷
& web features ⚙

Web developers

Dos (*)

● Talk about features
such as “Fetch priority”.

● Read dedicated documentation
about features, e.g., on MDN.

● Look for useful compatibility data
on MDN, Can I Use, etc.

Don’ts (*)

● Don’t care about how features get
grouped into specs.

● Don’t read specs, which is OK,
because they’re hard to read.

● Don’t look at the standardization
status of specs to use a feature.

(*) Your mileage may vary…

Ideally, web features…

● Identify what web developers get and what they want from the web
platform, in terms that speak to their needs and interests.

● Track some functionality across sources (surveys, docs, support data,
specs, tests) and over time.

● Capture interoperability information that developers can rely on.

��

Examples: Aborting ongoing activities, Grids, Popover, WebTransport, etc.

Web feature phases

The web-features project

A catalog of web features developed by the WebDX Community Group to

● Identify capabilities of the web.
● Track features across phases.
● Capture Baseline availability across key browsers and releases through

Published as an NPM package.
See web-platform-dx/web-features repository.

https://github.com/web-platform-dx/web-features

Baseline status

● Identify well supported features.
● Computed from support data in the

MDN browser-compat-data (BCD)
project.

● Two Baseline statuses:
○ Baseline low: available across latest versions

of browsers in the core browser set (*)
○ Baseline high: widely available. Across

browsers in the core browser set (*) for at
least 30 months.

From “Baseline's evolution on MDN” - 5 december 2023
https://developer.mozilla.org/en-US/blog/baseline-evolution-on-mdn/

(*) Apple Safari (macOS, iOS), Google Chrome (desktop, Android),
Microsoft Edge (desktop), Mozilla Firefox (Android, desktop)

https://developer.mozilla.org/en-US/blog/baseline-evolution-on-mdn/

Baseline in MDN and Can I Use

Other integrations

The WebDX CG is currently working with other projects to propagate identifiers
provided by the web-features project, and improve tracking of features across
sources:

● Web Platform Tests
● State of * surveys
● …
● What about integration in the standardization process?

https://github.com/web-platform-tests/wpt
https://github.com/Devographics/Monorepo/issues/358

Web features
& Standardization

The W3C Process ❤ features

● It defines “New features” as “Changes that add new functionality, such as
new elements, new APIs, new rules, etc.” (a.k.a. class 4 changes)
https://www.w3.org/2023/Process-20231103/#class-4

● It uses features to assess “adequate implementation experience”
https://www.w3.org/2023/Process-20231103/#implementation-experience

● It sets requirements for “new features” at certain maturity levels, e.g.,
https://www.w3.org/2023/Process-20231103/#allow-new-features

● It allows “features at risk” in Candidate Recommendations
https://www.w3.org/2023/Process-20231103/#at-risk

https://www.w3.org/2023/Process-20231103/#class-4
https://www.w3.org/2023/Process-20231103/#implementation-experience
https://www.w3.org/2023/Process-20231103/#allow-new-features
https://www.w3.org/2023/Process-20231103/#at-risk

The Recommendation track

Test suite,
implementation

report

Wide review,
all features

defined

AC review,
first batch of

features

WD Working Draft
CR Candidate Recommendation
PR Proposed Recommendation
REC Recommendation
AC Advisory Committee

Incubation WD PR RECCR
Snapshot

CR
Draft

The Recommendation track &
the Baseline status of spec features

WD Working Draft
CR Candidate Recommendation
PR Proposed Recommendation
REC Recommendation
AC Advisory Committee

Test suite,
implementation

report

Wide review,
all features

defined

AC review,
first batch of

features

Incubation WD PR RECCR
Snapshot

CR
Draft

 Baseline high Not Baseline Baseline low

Standardization signals?

Baseline may be used to detect divergences between the developer perspective and the
standardization status of the underlying specs:

● Late incubations:
Specs that define Baseline features but that are not on the Recommendation track.

● Late Working Drafts:
Specs that define Baseline features but that are still Working Drafts.

● Not-so-well supported Recommendations:
Recommendations that still define non-Baseline features.

● Process assessment:
Interval between publication as Recommendation and features reaching Baseline status
(note that interval may go both ways!).
Evolution of the number of specs in the previous lists.

First stab at exploring
standardization signals

Exploring standardization signals

● See code in tidoust/web-features-standardization repository
and first report in issue #1.

● Combines Baseline info in web-features and spec status info in
browser-specs, using BCD to map features to specs.

● Reports specs that may be worth looking into:
○ Late incubations
○ Late Working Drafts
○ Not-so-well supported Recommendations

● No analysis of interval between Rec and Baseline for now!
(info not directly available in browser-specs)

https://github.com/tidoust/web-features-standardization
https://github.com/tidoust/web-features-standardization/issues/1
https://github.com/web-platform-dx/web-features
https://github.com/w3c/browser-specs/
https://github.com/mdn/browser-compat-data

Highlights from the first report

Late incubations?

● Compression Streams
● CSS Environment Variables Module Level 1
● File and Directory Entries API
● Media Playback Quality
● requestVideoFrameCallback()
● The “threads” fork of WebAssembly JS

Interface

Late Working Drafts?

● CSS Box Alignment Module Level 3
● CSSOM View Module (scrollIntoView()

and layerName)
● Motion Path Module Level 1
● Selectors Level 4
● Server Timing
● Web Animations
● WebTransport (first batch of features)

Not-so-well supported Recommendations?

● Web Share API
● Web Cryptography API (some bits under SubtleCrypto)

Some known caveats

● Features coverage in web-features is far from complete.
To extend coverage, code runs a second analysis considering each spec is
a feature and computing Baseline info from BCD.

● Signals are just signals. They need to be analyzed.
For instance, specs identified as potentially late may well define other less
advanced features.

● BCD keys often map to an unversioned spec URL. The code uses the
“current spec” in the series when that happens. That may not be correct.

● Some Recommendations are missing from browser-specs as the
project focuses on the latest version in a series.

Some known reasons for delays

Out of incubation:

● Chartering a Working Group is hard.
● Hard to secure resources to move forward (chairs, editors, testers, etc.)
● Publication as First Public Working Draft triggers call for exclusions. Groups may delay

publication until the spec contains enough features.

Out of Working Draft:

● Wide review is hard, especially when the spec keeps on moving.
● Groups use a more real-time feedback loop to inform and revise the spec based on

implementation experience, and tend to delay publication of specs as Candidate
Recommendation until the work is essentially done (scope, tests, implementations).

Discussion

Quick Q&A

● What about computing interoperability from Web Platform Tests?
○ Too fine-grained, always a test that fails somewhere.
○ Harder to map to features.

● Is web-features really needed here?
○ It conveys a developers perspective, which completes the standardization perspective with

more practical “can use / can’t use” considerations.
○ It provides a mapping to BCD keys, allowing to exclude keys that are potentially less

interoperable but also less interesting for main usage scenarios (e.g., event constructors).
○ It allows to distinguish features within a spec. A spec-based approach only sees the Web

Speech API as a whole. Features see “Speech synthesis” and “Speech recognition” with
very different compatibility statuses.

Possible discussion topics

● What additional data or tooling would make web-features a powerful tool
for standardization?

● How would you like to see web-features data presented in standards work?
● On the meaning of “interoperability”

○ Different levels at which it can be evaluated
○ Example of accessibility support in assistive technology.

Thank you!

Attributions

Icons from www.flaticon.com:

● Brickwall, Question mark, Must have,
Medal, Website, BFF, Hard work, Star,
Timeline, Under construction icons
created by Freepik

● Promise icons, Brainstorming icons
created by Eucalyp

● Wish list icons created by monkik

http://www.flaticon.com
https://www.flaticon.com/free-icons/foundation
https://www.flaticon.com/free-icons/question-mark
https://www.flaticon.com/free-icons/need
https://www.flaticon.com/free-icons/medal
https://www.flaticon.com/free-icons/website
https://www.flaticon.com/free-icons/bff
https://www.flaticon.com/free-icons/hard-work
https://www.flaticon.com/free-icons/star
https://www.flaticon.com/free-icons/timeline
https://www.flaticon.com/free-icons/under-construction
https://www.flaticon.com/free-icons/promise
https://www.flaticon.com/free-icons/brainstorming
https://www.flaticon.com/free-icons/wish-list

