
Hybrid AI for the Web:
Caching

Michael McCool, Geoff Gustafson,
Sudeep Divakaran, Muthaiah Venkatachalam

Intel

13 June 2024, W3C WebML WG



Outline

• Key points from offline discussion…

• Model size and download times

• Working set size and size of cache needed

• Security and privacy considerations

• Caching desired properties

• Possible solutions
• No silver bullet!

• Some options, but with tradeoffs



Key Points from Offline Discussion…

• Some models are too large to download during session
• Need something like Background Fetch

• Rather than specific models, perhaps think about particular use cases 
• Functionality could be implemented with one of several models

• Somewhat equivalent to “fixed-function APIs”

• Adapters and variants are a challenge
• Many models have them “baked-in”

• Models may have many variants that differ in quantization, etc.



Security and Privacy Considerations
• Current browsers implement only per-origin local caches

• Cross-site privacy risk based on cache timing analysis:
• Site A can figure out if a user visited Site B 

• Per-origin caches tolerable for “typical” (non-AI) web resources: 
• Sharing rate for images is low in practice

• Files that are often shared tend to be small, e.g. script libraries

• BUT AI Models are large and potentially shared

• Arbitrary key-value cross-site caches are also a privacy risk
• Data exfiltration and tracking



Possible Mitigations

1. Disallow use of WebNN in third-party context by default
• Already part of WebNN specification

2. Generate keys (e.g. use a hash) based on actual model content
• Avoids data exfiltration (block data transfers) 

• … but possibly not tracking (needs only existence checks)

3. Limit number of built models and/or cache checks 
• Avoid use of multiple model existence checks for transferring many bits



Caching Desired Properties

1. Reduce Latency: Fetch model from cache upon second use

2. Reduce Bandwidth: Avoid redundant downloads

3. Reduce Storage: Consolidate and reuse models as much as possible
• Cross-site?

• Across implementations?

• Model consolidation?
• Across equivalence classes? (e.g. different quantization levels of same model)

• Across different serializations?

4. Preserve Privacy



Proposal: Define New Model-Aware Caches 

Some key ideas:

1. Use “fake misses” (delays) to avoid redundant downloads.

2. Progress model loads/timers only when requesting page is inactive.

3. Identify cache items by content-dependent hashes.

4. Use deduplication to avoid redundant storage.

Some alternatives:

1. Use existing APIs/caches, perhaps with some extensions

2. Use the File System API + Background Fetch



Prototype Status

• Implemented:
• Node cache with hashes as keys, external Redis service for storage
• However: Model cache seems to be more generally useful

• Next Steps:
• Implement model cache
• Base on Service Worker Cache, Background Fetch if possible
• Three implementation options:

1. Capture/replay graph building by wrapping WebNN API (shim+extension)
2. Modify the implementation, e.g. Chromium, “under the hood” (best for performance)
3. Cache an existing model serialization, and use a model loader

• Write a detailed proposal document and explainer…



Backup



AI Model Download

Average Home Network Speeds

• 90 Mbps – Global

• 216 Mbps – US

Sources: 
• Speedtest.net

• USA Today: What is a Good Internet Speed

Model Size vs. Download Time

Maximum download in 1 minute:

• Global: 675 MB

• US: 1642 MB

Time to download Phi-3-mini:

• 3.8B bfloat16 parameters

• 2*3.8B = 7.6 GB

• Global: 11.3 minutes

• US: 4.69 minutes

https://www.speedtest.net/global-index
https://www.usatoday.com/tech/internet/what-is-a-good-internet-speed/


How Many Models need to be Cached?
• Number of models on Hugging 

Face (as of 2024-05-28): 
• 628,216

• Most of these are not directly 
useful for web applications
• Research projects
• Not well-tuned or aligned
• Components of other models
• Inappropriate use cases

Assumption (?): 
• There are 250 “useful” models.
• Storage required for 250 models 

the same size as Phi-3-mini: 
• 1.9TB

BUT:
• Many variants of each model

• Quantization, encoding, number of 
parameters

• Many derivatives of each model
• Fine-tuned
• Adapters, if used, may not be 

separate

• We don’t know the working set size 
(a dozen models?)

• Storage for 12 models the same 
size as Phi-3-mini: 
• 91.2GB



Security and Privacy Considerations

• Bad: Arbitrary key-value pairs in a shared cross-site model cache 
• Can be used for “mega-cookies” to exfiltrate data!

• Can be also be used as trackers.

• An abuser could build a fake model
• Embed data to be shared in the model

• Then the attacker would store the fake model in the cache.
• Attacker can retrieve model based on key from a different site;

• Then probe model to recover data.

NOTE: Service Worker Cache API cannot be simply made cross-origin.



References
• Storage Partitioning (see HTTP Caches especially)

• GPU Web Privacy Considerations (shader caches)

• Felten and Schneider, Timing Attacks on Web Privacy, 2000

• Judis, Say goodbye to resource-caching across sites and domains, 
2020

• CloudFlare (CDN) Origin Cache Control (can also be enabled in 
CDNs)

• Background Fetch – related API for large downloads.

• Cache AI models in the browser (Google) – how to use existing 
per-origin cache mechanisms for AI models

https://github.com/privacycg/storage-partitioning
https://gpuweb.github.io/gpuweb/#privacy-user-agent-state
https://dl.acm.org/doi/pdf/10.1145/352600.352606
https://www.stefanjudis.com/notes/say-goodbye-to-resource-caching-across-sites-and-domains/
https://www.stefanjudis.com/notes/say-goodbye-to-resource-caching-across-sites-and-domains/
https://developers.cloudflare.com/cache/concepts/cache-control/#enable-origin-cache-control
https://developer.chrome.com/blog/background-fetch/
https://developer.chrome.com/docs/ai/cache-models

	Slide 1: Hybrid AI for the Web: Caching
	Slide 2: Outline
	Slide 3: Key Points from Offline Discussion…
	Slide 4: Security and Privacy Considerations
	Slide 5: Possible Mitigations
	Slide 6: Caching Desired Properties
	Slide 7: Proposal: Define New Model-Aware Caches 
	Slide 8: Prototype Status
	Slide 12: Backup
	Slide 13: AI Model Download
	Slide 14: How Many Models need to be Cached?
	Slide 15: Security and Privacy Considerations
	Slide 16: References

