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it ABSTRACT
— Enterprise applications of Large Language Models (LLMs) hold promise for question answering on
— enterprise SOL databases. However, the extent to which LLMs can accurately mspond to enterprise
< questions in such databases remains unclear, given the absence of suitable Text-to-SOL benchmarks
W tailored to enterprise settings. Additionally. the potential of Knowledge Graphs (KGs) to enhance
5 LLM-based question answering by providing business context is not well understood. This study aims
—_— to evaluate the accuracy of LLM-powered question answering systems in the context of enterprise
. questions and SOL databases, while also exploring the role of knowledge graphs in improving
— accuracy. To achieve this, we introduce a benchmark comprising an enterprise SQL schema in the
o) insurance domain, a range of enterprise queries encompassing reporting to metrics. and a contextual
- layer incorporating an ontology and mappings that define a Enowlcdge graph. Our primary finding
oy reveals that question answering using GPT-4, with zero-shot prompis directly on SQL databases,
- achieves an accuracy of 16%. Notably, this accuracy increases to 54% when guestions are posed
- over a Know ledge Graph representation of the enterprise SOL database. Therefore. investing in
. Knowledge Graph provides higher accuracy for LLM powered question answering systems.
r_", Keywords Knowledge Graphs - Large Language Models - Question Answering - SQL Databases - Benchmark -
-l Retrieval Augmented Generation (RAG)
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A 1 Introduction
S

Cuestion answering, the ability to interact with data using natural language questions and obtaining accuraie results,
has been a long-standing challenge in computer science dating back to the 1960s[E] 1[0 [1]. The field has advanced
throughout the past decades n:lEEl [{7]]. through Text-to-SOL approaches, as a means of facilitating chatting with
the data that is stored in SQL databases[T3| (12 (18] [{l EL[19]. With the rise of Generative Al and Large Language
Modzls (LILMs), the interest continues to increase. These question answering systems hold temendous potential for
transforming the way data-driven decision maki s executed within enterprises.

[

While question answering systems have shown remarkable performance in several Text-to-SQL benchmarks [4 J].
such as Spider WikiSQLT%], KaggleDBQA[TI) their implications rlating to enterprise SQL databases remain
relatively obscure. | We argue that existing Question Answering and Text-to-SQL benchmarks, although valuable, are
often misaligned with real-world enterprise settings:

1. these benchmarks typically overlook complex database schemas representing enterprise domains, which likely
comprise hundreds of tables,

'A full survey on existing Text-1o-SQL benchmarks is owtside the scope of this work. We do believe that such survey would be
beneficial for the community.
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Modified Benchmark for Healthcare Information Domain
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Questions and Issues

* Need a list of publications for students to learn about
FHIR RDF

* Need a good (simple) example of the integration of an
ontology with FHIR RDF data to get students started

* Need feedback on other similar research projects

* Need feedback on setting expectations for how much
students can accomplish in one semester
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