
CSSWG F2F
Gamut Mapping

ccameron-chromium, 2024-02-14

The issue

This codepen with oklch(90% 10% 0deg) and oklch(90% 90% 0deg).

● “The promise of (ok)lch is supposedly that lightness should be consistent
across different hues and chromas. Clearly that's not currently true.”

● “From an authoring perspective it's entirely unusable, and it breaks the
fundamental promise of the format: providing perceptually-uniform lightness”

● “This is the format that authors were most excited about, and it doesn't do
what we told them it does.”

The bug: github.com/w3c/csswg-drafts/issues/9449

This codepen with oklch(90% 10% 0deg) and oklch(90% 90% 0deg).

● “The promise of (ok)lch is supposedly that lightness should be consistent
across different hues and chromas. Clearly that's not currently true.”

● “From an authoring perspective it's entirely unusable, and it breaks the
fundamental promise of the format: providing perceptually-uniform lightness”

● “This is the format that authors were most excited about, and it doesn't do
what we told them it does.”

The bug: github.com/w3c/csswg-drafts/issues/9449

Suppose we have in-gamut colors oklab(L0,a0,b0) and oklab(L1,a1,b1)

● The line between them is perceptually uniform
● If L0==L1, the line has constant lightness
● If (a0,b0) and (a1,b1) are same length, the line has constant saturation
● If (a0,b0) and (a1,b1) are same angle, the line has constant hue

This is a good space to do interpolation in.

What oklch *DOES* guarantee

Suppose L is in [0%,100%], c is in [0%,100%] and h is in [0deg,360deg]

There is no guarantee that oklch(L,c,h) is in any particular gamut or even
represents a physically possible color.

This is a DANGEROUS space to specify or manipulate colors in.

What oklch *DOES NOT* guarantee

oklab and oklch are dangerous spaces to
specify or manipulate color parameters

(their definition needs to be changed)

Draws a gradient between

oklch(90% 10% 0deg) and

oklch(90% 90% 0deg)

The codepen from the bug

Draws a gradient between

oklch(90% 10% 0deg) and

oklch(90% 90% 0deg)

The codepen from the bug

Draws a gradient between

oklch(90% 10% 0deg) and

oklch(90% 90% 0deg)

The codepen from the bug

Draws a gradient between

oklch(90% 10% 0deg) and

oklch(90% 90% 0deg)

The codepen from the bug

Draws a gradient between

oklch(90% 10% 0deg) and

oklch(90% 90% 0deg)

The codepen from the bug

Draws a gradient between

oklch(90% 10% 0deg) and

oklch(90% 90% 0deg)

(with P3 gamut)

The codepen from the bug

Draws a gradient between

oklch(90% 10% 0deg) and

oklch(90% 90% 0deg)

(with Rec2020 gamut)

The codepen from the bug

Draws a gradient between

oklch(90% 10% 0deg) and

oklch(90% 90% 0deg)

The codepen from the bug

NOT a safe parameter space for
specifying values or
manipulating values

Draws a gradient between

oklch(90% 10% 0deg) and

oklch(90% 90% 0deg)

The codepen from the bug

Draws a gradient between

oklch(90% 10% 0deg) and

oklch(90% 90% 0deg) and

oklch(10% 90% 0deg)

The codepen from the bug

Draws a gradient between

oklch(90% 10% 0deg) and

oklch(90% 90% 0deg) and

oklch(10% 90% 0deg)

The codepen from the bug

What should oklch(90% 90% 0deg) look
like?

(we need to limit what authors specify or
everyone will suffer)

It is mathematically equivalent to color(srgb 1.53, 0.10, 0.83).

CSS gamut mapping to sRGB gives us
rgb(100% 78.52% 86.15%) XXX

Clamping to sRGB gives us
rgb(100% 10.37% 83.26%) XXX

But what did we actually specify?

What should oklch(90% 90% 0deg) be?

What should oklch(90% 90% 0deg) be?

What should oklch(90% 90% 0deg) be?

What should oklch(90% 90% 0deg) be?

What should oklch(90% 90% 0deg) be?

What should oklch(90% 90% 0deg) be?

What should oklch(90% 90% 0deg) be?

What should oklch(90% 90% 0deg) be?

An author who specifies
oklch(90% 90% 0deg)…

will see this today

but actually specified this, and
one day will see that

this will be a problem
for us in the future

What should oklch(90% 90% 0deg) be?

An author who specifies
oklch(90% 90% 0deg)…

will see this today

but actually specified this, and
one day will see that

CSS should not dictate gamut mapping

CSS should not dictate gamut mapping

We’ve established we should never have to gamut map >Rec2020 to <sRGB

There are lots of tools that already do this (display profiles, MDCV metadata)

Just use those!

Proposed resolutions

Add non-normative text to advise authors to not specify colors that:

● do not physically exist
● their display cannot produce (weaker)

Proposed resolutions

Add non-normative text to advise authors to not specify colors that:

● do not physically exist
● their display cannot produce (weaker)

Remove gamut mapping from its current place in the spec

Proposed resolutions

Proposed resolutions

Add non-normative text to advise authors to not specify colors that:

● do not physically exist
● their display cannot produce (weaker)

Remove gamut mapping from its current place in the spec

Change spec definitions of colorspace to:

● bake gamut mapping to Rec2020 into oklab and oklch
● consider baking gamut mapping into lab and lch
● consider enforcing [0,1] parameter range for RGB spaces

