
Proprietary + Confidential

February 2024

Anchor positioning
Spec Updates
CSSWG F2F February 2024

Proprietary + Confidential

Anchor-center alignment value

Grid-based syntax (inset-area)

Auto-positioning rewrite

Animating fallback positions

Scoping anchor names

Tether

01

02

03

04

05

06

Anchor
Spec
Additions

Proprietary + Confidential

Anchor-center
alignment value

Update 01

Proprietary + Confidential

This is a new keyword addition to the align-self and justify-self property.

The new keyword is effective only if the element is absolutely-positioned and has a valid default
anchor. Otherwise, it behaves the same as center.

If effective:
● When calculating the inset-modified containing block, and when both inset sides are

auto, it creates an available space that is centered at the default anchor and expands
as far as possible until reaching the containing block boundary.

● When placing the element, it is center-aligned with the default anchor.

Anchor-center
[spec link]

Proprietary + Confidential

Grid-based syntax
(inset-area)

Update 02

Proprietary + Confidential

inset-area
[spec link]

Proprietary + Confidential

Similar to grid-area changing the containing block for an abspos child of a Grid, inset-area changes the
containing block to a segment of an anchor-related 3x3 grid. (Related to the same-named feature from the
Apple feedback.)

Values like:
● top left (into the top left corner)
● center (on top of the anchor)
● center-block-start all (in the first and second rows, across all columns)

Also changes how place-self: normal resolves, to align it either snug to the anchor or centered
(anchor-center) on the anchor automatically.

Because containing block changes, you can refer to the region's size directly, like:
inset-area: bottom; max-height: 100%; overflow: auto;
(centered on the anchor horizontally, snug against its bottom edge, content-sized unless that would overflow)

inset-area
[spec link]

Proprietary + Confidential

inset-area

center-block-start;

Proprietary + Confidential

.toggletip {
 inset-area: bottom;
}

inset-area
[live demo]

.toggletip {
 top: anchor(bottom);
 align-self: top;
 justify-self: anchor-center;
}

PREV NEW

Proprietary + Confidential

Auto-positioning
rewrite

Update 03

Proprietary + Confidential

Old spec: anchor(auto) would "magically" create fallback sets using the opposite inset.

Now: flip-block, flip-inline, flip-start values in position-try-options

Generates a fallback set inverting all the relevant properties - inset-area, insets, margins,
alignment.

Auto-positioning
[spec link]

Proprietary + Confidential

Fallback Rewrite
Update 04

Proprietary + Confidential

Changed syntax model slightly to reduce amount of indirection.

Before:
● position-fallback to select a @position-fallback rule
● @position-fallback --foo{ @try{/* styles */} @try{/* styles */} }
● anchor(auto) to do a very limited auto-generation of styles

Now:
● position-try-options to give a list of options
● @position-try --foo {/*styles*/} to create one named style set
● flip-block/flip-inline/etc to specify an auto-generated style set

Like: position-try-options: flip-block, --foo, --bar;

Fallback
[spec link]

Proprietary + Confidential

Also, position-try-order to sort the fallback options according to the size of the containing
block. Values like most-width, most-block-size, etc. (Many anchoring JS libraries do this.)

position-try shorthand to set both at once.

.tooltip {
 position: fixed;
 position-try: most-block-size --below-anchor, --above-anchor;

Fallback
[spec link]

Proprietary + Confidential

#my-tooltip {
 inset-area: top;
 position-try-options: flip-block;
}

Simple flip fallback positioning
[live demo (@position-fallback)]

@position-fallback --top-then-bottom {
 @try {
 bottom: anchor(top);
 left: anchor(center);
 }

 @try {
 top: anchor(bottom);
 left: anchor(center);
 }
}

#my-tooltip {
 position-fallback: --top-then-bottom;
 /* Centering */
 translate: -50% 0;
}

PREV NEW

Proprietary + Confidential

@position-try --left {
 inset-area: inline-start;
}

#my-tooltip {
 inset-area: top;
 position-try-options: --left, flip-block;
}

Complex fallback positioning

@position-fallback --top-left-bottom {
 @try {
 bottom: anchor(top);
 left: anchor(right);
 }

 @try {
 top: anchor(center);
 left: anchor(left);
 }

 @try {
 top: anchor(bottom);
 left: anchor(center);
 }
}

#my-tooltip {
 position-fallback: --top-left-bottom;
}

PREV

NEW

Proprietary + Confidential

#my-tooltip {
 inset-area: top;
 position-try-options: flip-start, flip-block;
}

Complex fallback positioning

@position-fallback --top-left-bottom {
 @try {
 bottom: anchor(top);
 left: anchor(right);
 }

 @try {
 top: anchor(center);
 left: anchor(left);
 }

 @try {
 top: anchor(bottom);
 left: anchor(center);
 }
}

#my-tooltip {
 position-fallback: --top-left-bottom;
}

PREV

NEW

Proprietary + Confidential

Animating fallback
position

Computed(ish) instead of
used value timing

Update 04

Proprietary + Confidential

Properties affected by container queries, and cq units
themselves, operate as "computed value"-ish.

Behavior is not yet specified, but Chrome and WebKit, at least,
both end up with similar results - the result of the container
changing can trigger computed-value changes, which kick off
transitions. We're provisionally calling this "style interleaving".

Plan (currently sketched in the spec) is to do the same with the
allowed @position-try properties.

This allows elements to smoothly animate when their anchor
changes, when their alignment changes, etc, none of which are
possible if you transition the individual properties based on their
"normal" computed value.

Animating

Proprietary + Confidential

Scoping anchor
names

Update 05

Proprietary + Confidential

Style containment already scopes anchor names. anchor-scope property isn't in the
spec yet, but I plan to add it soon, to trigger this functionality more intentionally.

Related problem, tho, with shadow DOM. Strong requests from internal teams (and we
believe reflect general author need) to somehow let an element position against an
anchor hidden away in shadow DOM. Need more research on this.

Proprietary + Confidential

Tether

(anchor-level-2)

Update 06

Proprietary + Confidential

When an element is anchor-positioned with a valid default anchor, it also creates two
pseudo elements with the following tree structure:

CB
+- anchor-positioned element
+- ::tether-container
 +- ::tether

Where ::tether-container is an absolutely positioned box inserted as a sibling
after the anchor-positioned element, and its insets are set by the UA style to match the
“tether region” between the element and its anchor. The UA style and the box’s layout
is similar to this demo.
::tether is an absolutely positioned child box of ::tether-container and can
be styled arbitrarily.

The main use case is to create an arrow that points to the default anchor element.

::tether
[css-anchor-position-2]

Proprietary + Confidential

Last year, we resolved to keep it in the level 1 spec, punting if eventually
necessary.

I propose more strongly that we go ahead and punt it, despite its desirability.

Non-trivial versions of the feature will just require fundamentally new (non
positioning-related) functionality, like border shaping. I'm not working on that in
the near future, and if nobody else is committing to it, I don't want to keep an
aspirational section in the spec.

Proprietary + Confidential

Questions?

