
Why ‘display: masonry’?
CSSWG Meeting 12/4/2024

#1 Property/value differences
● Only applicable in Masonry:

○ masonry-slack
○ masonry-auto-flow
○ Intrinsic auto repeaters repeat(auto-fill, auto)

● Only applicable in Grid:

○ grid-auto-flow

#1 Property/value differences
● Behave differently in each, or have different valid values:

○ grid-template-areas
○ grid-template
○ Track sizing values for grid-template-columns and

grid-template-rows
○ Grid has four placement properties, masonry only has two

○ Only grid can use all six justify-* and align-* properties.

● What happens in error cases?

● masonry-template-tracks defaults

to repeat(auto-areas, auto)

#2 Better property defaults

A note on Grid as the default fallback
● Needing a fallback for Masonry is a temporary problem

● Grid may be a good fallback in some cases

● Authors should make the choice of how to fallback consciously to avoid

potential surprises with an automatic fallback

#3 Positioning items is less complex
● Only allowed in Grid axis

● Since Grid is multi-dimensional, authors must carefully remember what

direction placement is allowed

● If authors get it wrong with Grid, it will parse but not work

● With display: masonry, masonry-track-* applies to the Grid axis

alone, which makes switching the Masonry direction seamless

#3 Positioning items is less complex

#4 Shorthands are more useful
● Grid shorthand is complex given its 2 dimensional nature, and it is not widely

used by authors

● With display: masonry the shorthand syntax is simpler, and thus, more

likely to be utilized by authors

.masonry {
 display: grid;
 grid: repeat(3, 1fr) / masonry;
}

.masonry {
 display: masonry;
 masonry: repeat(3, 1fr) row;
}

#5 Masonry placement != Grid placement

● Due to the interaction of spanners within a Masonry, Masonry will need to

define how dense packing works in a different way than Grid

#5 Masonry placement != Grid placement

https://github.com/w3c/csswg-drafts/issues/9326

#6 Masonry implies different intrinsic sizing

#7 Alignment needs to be defined differently

#8 Subgrid needs to be defined differently
● In Masonry layout, auto-placed subgrids don’t inherit any line names from their

parent grid, because that would require the subgrid to have a single definite

placement, which is not possible in the Masonry placement algorithm since

final placement is determined after track sizing is completed

#8 Subgrid needs to be defined differently
● As Submasonry gets further fleshed out, we expect to find more areas of

divergence that will need to be explicitly defined in the spec

○ E.g., how to account for auto-placed items in a Submasonry within a Grid

ancestor? Likely we will need to extend the concept of the virtual item

groups further than just in Masonry’s track sizing

#9 Reduced spec complexity &
improved teachability
All of these differences between Grid & Masonry from points 1 to 8 lead to the

following if Masonry is incorporated into CSS Grid Level 3:

● Spec bloat

● Reduced teachability

● Developer confusion

Our conclusion:
Masonry should be a separate display type

Further resources
Github ‘display:
masonry’ proposal and
discussion
CSSWG issue #9041

BlinkOn talk discussing
support for ‘display:
masonry’
Ethan Jimenez

“How Should we define
CSS Masonry”
Rachel Andrew, Ian Kilpatrick, Tab
Atkins

https://github.com/w3c/csswg-drafts/issues/9041
https://github.com/w3c/csswg-drafts/issues/9041
https://github.com/w3c/csswg-drafts/issues/9041
https://www.youtube.com/watch?v=4CY58cyBwCA
https://www.youtube.com/watch?v=4CY58cyBwCA
https://www.youtube.com/watch?v=4CY58cyBwCA
https://developer.chrome.com/blog/masonry-syntax
https://developer.chrome.com/blog/masonry-syntax

