
Let’s Decide —
Just Use Grid or

New Masonry Layout?

CSS Working Group, December 4th 2024

Let’s decide — shall we Just Use Grid or create a whole new Masonry Layout mode?

.container {
 display: grid;
 grid-template-columns:

repeat(3, 1fr);
 grid-template-rows: masonry;
 gap: 10px;
}

.container {
 display: masonry;
 masonry-template-tracks:

 repeat(3, 1fr);
 masonry-direction: column;
 gap: 10px;
}

Just Use Grid New Masonry Layout

At this point, the decision is about syntax. About the mental model. The functionality is identical either
way.

.container {
 display: grid;
 grid-template-columns:

 repeat(auto-fill, minmax(14rem, 1fr));
 grid-template-rows: collapse;
 gap: 1rem;
}

Just Use Grid

.container {
 display: masonry;
 masonry-template-tracks:

 repeat(auto-fill, minmax(14rem, 1fr));
 masonry-direction: column; /* default */
 gap: 1rem;
}

New Masonry Layout

To get the layout on the left, in both we 􀩫 declare the display type on the container, 􀩫 define the
column sizes, 􀩫 specify which axis gets the masonry-style packing, 􀩫 and create a gap.

Just Use Grid

main {
 display: grid;
 grid-template-columns: repeat(auto-fit, minmax(14rem, 1fr));
 grid-template-rows: none; /* default value */
 gap: 1rem;
}

main {
 display: grid;
 grid-template-columns: repeat(auto-fit, minmax(14rem, 1fr));
 grid-template-rows: collapse;
 gap: 1rem;
}

CSS Grid level 1 CSS Grid level 3

The choice to Just Use Grid is a choice to extend Grid level 1 to now be able to create the kind of
packing made popular in masonry / waterfall frameworks.

On the left, we’ve got CSS Grid.

On the right, we add one new value and now Grid has more power.

(BTW “collapse” is just a suggestions for the value — we can bike shed it later).

New Masonry Layout

main {
 display: grid;
 grid-template-columns: repeat(auto-fit, minmax(14rem, 1fr));
 grid-template-rows: auto; /* default value */
 gap: 1rem;
}

main {
 display: masonry;
 masonry-template-tracks: repeat(auto-fit, minmax(14rem, 1fr));
 masonry-direction: column; /* default */
 gap: 1rem;
}

CSS Grid CSS Masonry

The choice to create a new layout type called Masonry is a choice to add a whole new layout mode —
Grid, Flexbox, Block layout… and now Masonry.

It’s a separate tool, with new syntax that mimics what authors already know, but it’s not the same.

Ju
st

 U
se

 G
ri

d

N
ew

 M
as

on
ry

 L
ay

ou
t

If we just use Grid, we’ll add 1 new value, and 1 new property.

(Anything new to CSS is marked here in blue.)

If we create a new Masonry Layout mode, we’ll be adding 1 new value and 12 new properties to
CSS.

We believe there’s just not a compelling enough argument to warrant adding all of these new
properties. But let’s dig into it…

Ju
st

 U
se

 G
ri

d

N
ew

 M
as

on
ry

 L
ay

ou
t

Both use the `display` property to get things started.

Ju
st

 U
se

 G
ri

d

N
ew

 M
as

on
ry

 L
ay

ou
t

With the template properties you define track sizes.

Ju
st

 U
se

 G
ri

d

N
ew

 M
as

on
ry

 L
ay

ou
t

To specify which dimension gets packed masonry-style —  
in Grid, you “collapse” the content together  
by declaring so in the appropriate track definition.

In the new Masonry Layout, you instead use  
`masonry-direction`.

Ju
st

 U
se

 G
ri

d

N
ew

 M
as

on
ry

 L
ay

ou
t

They both have ways to define explicit placement of content…

Ju
st

 U
se

 G
ri

d

N
ew

 M
as

on
ry

 L
ay

ou
t

Both have a new `slack` property that adjusts how picky  
the browser is when selecting the next space in which to place an item.

Ju
st

 U
se

 G
ri

d

N
ew

 M
as

on
ry

 L
ay

ou
t

Both options support the `gap` property.  
Both have an extra-short hand.

Ju
st

 U
se

 G
ri

d

N
ew

 M
as

on
ry

 L
ay

ou
t

Both have a way to size implicit tracks.

Ju
st

 U
se

 G
ri

d

N
ew

 M
as

on
ry

 L
ay

ou
t

Here’s a more significant difference… There are three new properties in Masonry — masonry-direction,
fill and flow that cover the functionality that’s covered in CSS Grid by `grid-auto-flow` — to control how
the auto-placement algorithm works.

Chrome argues that masonry-direction, fill and flow will be more understandable than grid-auto-flow.
That without making this change authors will be confused.

We don’t agree. We believe that since it does the same thing it does for CSS Grid, authors will
understand it. If they learned Grid, they already know it.

Ju
st

 U
se

 G
ri

d

N
ew

 M
as

on
ry

 L
ay

ou
t

Both have the ability to define named areas, including with the ‘ascii art’ technique. But there’s also a
difference here.

Named Area Columns

New Masonry Layout

masonry-template: "narrow wide”
 1fr 3fr;

Just Use Grid

grid-template: "narrow wide”
 1fr 3fr;

CSS Grid level 1

grid-template: "narrow wide”
 1fr 3fr;

In CSS Grid, if you want to create a “narrow” 1fr column &  
a “wide” 3fr column — you can use this syntax, effectively diagramming the names and sizes of the
columns.

􀩫 For both the Just Use Grid and New Masonry Layout options, the syntax is identical to Grid —
when defining columns.

Named Area Rows

masonry-template: “tall wide”
 1fr 3fr;

New
Masonry

Layout

grid-template: "tall" 2fr
 "wide" 1fr; Just Use

Grid

grid-template: "tall" 2fr
 "wide" 1fr; CSS Grid

level 1

􀩫 For laying out rows, Grid’s template syntax is a little different, stacking the area names to diagram
the names and sizes of the rows. 􀩫 When switching to a masonry-style packing, Just Use Grid re-
uses this syntax exactly.

􀩫 New Masonry Layout, however, sticks with the named columns template syntax. Chrome argues
that using the same syntax in both axes is better. We believe matching the existing Grid template API is
better.

Named Area Rows

masonry-template: “tall wide”
 1fr 3fr;
masonry-flow: row;

New
Masonry

Layout

grid-template: "tall" 2fr
 "wide" 1fr;
grid-auto-flow: column;

Just Use
Grid

grid-template: "tall" 2fr
 "wide" 1fr;
grid-auto-flow: column;

CSS Grid
level 1

You can also see the difference between `grid-auto-flow` vs `masonry-flow`, (with it’s `masonry-fill` &
`masonry-direction` longhands) in this example.

Flexbox’s `flex-flow` property indicates both the orientation of lines as well as the primary placement
axis. But in Masonry, these two axes are different. Grid’s `grid-auto-flow` value indicates the primary fill
direction; and Just Use Grid follows this convention. Chrome argues that the flow value should indicate
the orientation of lines, rather than placement, so they’ve changed it to `masonry-flow: row`. This might
not be an unreasonable idea, but is it worth creating an entire new layout system for such tweaks?

Ju
st

 U
se

 G
ri

d
Ju

st
 U

se
 G

ri
d

N
ew

 M
as

on
ry

 L
ay

ou
t

Overall — there’s a lot of new syntax being proposed in New Masonry layout — most of which does the
same thing. But some of which is subtly different in a way that’s likely to trip people up.

Adding Masonry-style features to CSS is not an opportunity to fork Grid and rewrite past decisions.
Authors will just get frustrated and confused.

Defaults

Chrome argues that the new syntax is worth the effort because it creates better defaults. We do not
believe their proposed defaults are actually that useful. And that it’s not worth it to create a whole new
display type to change the defaults.

.container {
 display: masonry;
 masonry-template-tracks: repeat(auto-areas, auto); /* new default value */
}

New Masonry Layout

Specifically, there’s an idea that all an author would have to write is `display: masonry` and they would
get a typical Pinterest style layout with just that one line of code. We wrote several thousand words in
our article walking through how auto sizing would affect the layout and showing that it’s not actually a
very useful default. It just moves the responsibility for sizing to the items, and often leaves authors in a
very hard to understand state. Understanding `auto` sizing is the hardest thing in CSS, and authors do
not understand it.

Just Use Grid
• Very simple — just adds one new value

• Re-uses existing syntax, less to memorize

• Shared mental model from Grid level 1 makes it easier to learn

• And easier to switch between (in Feature Queries, at breakpoints, for
progressive enhancement, etc) — a signal it fits into the design of CSS

• Follows CSS design principles to reuse what already exists

We want to Just Use Grid. It’s very simple. It just adds one new value.

It re-uses existing syntax, making for far less for authors to memorize.

Using a shared mental model from Grid level 1 makes it easier to learn.

And using a shared mental model with Grid level 1 makes it easier to switch between Grid 1 and the
new capabilities in Feature Queries, at breakpoints, for progressive enhancement. That’s a signal it fits
into the design of CSS.

And it follows CSS design principles to reuse what already exists.

