
W3C WebRTC
WG Meeting

August 27, 2024
8 AM - 10 AM

Chairs: Bernard Aboba
Harald Alvestrand
Jan-Ivar Bruaroey 1

W3C WG IPR Policy
● This group abides by the W3C Patent Policy

https://www.w3.org/Consortium/Patent-Policy/
● Only people and companies listed at

https://www.w3.org/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

2

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!
● Welcome to the August 2024 interim meeting

of the W3C WebRTC WG, at which we will
cover:
○ Captured Surface Control, moving forward with mute,

speaker-selection, scale resolution down to, codec matching.
● Future meetings:

○ TPAC, September 23- 27, 2024
○ October 15
○ November 19
○ December 10

3

https://www.w3.org/2011/04/webrtc/wiki/Main_Page#Meetings
https://www.w3.org/2011/04/webrtc/wiki/October_15_2024
https://www.w3.org/2011/04/webrtc/wiki/November_19_2024
https://www.w3.org/2011/04/webrtc/wiki/December_10_2024

TPAC 2024 Schedule
● Venue: Hilton Anaheim, California

○ Time Zone: Pacific Daylight Time (UTC -7)
● Tuesday, September 24, 2024

○ 09:00 - 12:30 WEBRTC WG
○ 16:30 -18:00 WEBRTC WG/SCCG Joint Meeting

● Wednesday, September 25, 2024
○ Breakout Sessions

● Thursday, September 26, 2024
○ 14:00 - 16:00 WEBRTC WG/MEDIA WG Joint Meeting

4

https://www.w3.org/2024/09/TPAC/#schedule
https://github.com/w3c/tpac2024-breakouts/issues

About this Virtual Meeting
● Meeting info:

○ https://www.w3.org/2011/04/webrtc/wiki/August_27_2024

● Link to latest drafts:
○ https://w3c.github.io/mediacapture-main/
○ https://w3c.github.io/mediacapture-extensions/
○ https://w3c.github.io/mediacapture-image/
○ https://w3c.github.io/mediacapture-output/
○ https://w3c.github.io/mediacapture-screen-share/
○ https://w3c.github.io/mediacapture-record/
○ https://w3c.github.io/webrtc-pc/
○ https://w3c.github.io/webrtc-extensions/
○ https://w3c.github.io/webrtc-stats/
○ https://w3c.github.io/mst-content-hint/
○ https://w3c.github.io/webrtc-priority/
○ https://w3c.github.io/webrtc-nv-use-cases/
○ https://github.com/w3c/webrtc-encoded-transform
○ https://github.com/w3c/mediacapture-transform
○ https://github.com/w3c/webrtc-svc
○ https://github.com/w3c/webrtc-ice

● Link to Slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● The meeting is (still) being recorded. The recording will be public.
● Volunteers for note taking? 5

https://www.w3.org/2011/04/webrtc/wiki/August_27__2024
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-extensions/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions/
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/mst-content-hint/
https://w3c.github.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://github.com/w3c/webrtc-encoded-transform
https://github.com/w3c/mediacapture-transform
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://www.w3.org/2011/04/webrtc/wiki/August_27_2024
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

W3C Code of Conduct
● This meeting operates under W3C Code of Ethics and

Professional Conduct

● We're all passionate about improving WebRTC and the
Web, but let's all keep the conversations cordial and
professional

6

https://www.w3.org/Consortium/cepc/
https://www.w3.org/Consortium/cepc/

Virtual Interim Meeting Tips
This session is (still) being recorded

● Click to get into the speaker queue.
● Click to get out of the speaker queue.
● Please wait for microphone access to be granted before

speaking.
● If you jump the speaker queue, you will be muted.
● Please use headphones when speaking to avoid echo.
● Please state your full name before speaking.
● Poll mechanism may be used to gauge the “sense of the

room”.

7

Understanding Document Status
● Hosting within the W3C repo does not imply adoption by the

WG.
○ WG adoption requires a Call for Adoption (CfA) on the

mailing list.
● Editor’s drafts do not represent WG consensus.

○ WG drafts do imply consensus, once they’re confirmed
by a Call for Consensus (CfC) on the mailing list.

○ Possible to merge PRs that may lack consensus, if a
note is attached indicating controversy.

8

Issues for Discussion Today
● 08:10 - 08:30 AM Captured Surface Control (Guido)
● 08:30 - 08:50 AM Moving forward with mute (Guido)
● 08:50 - 09:10 AM Speaker-selection (Jan-Ivar)
● 09:10 - 09:30 AM Scale Resolution Down To (Henrik)
● 09:30 - 09:50 AM RTCRtpParameters.codec (Jan-Ivar)
● 09:50 - 10:00 AM Wrapup and Next Steps (Chairs)

Time control:
● A warning will be given 2 minutes before time is up.
● Once time has elapsed we will move on to the next item.

9

Captured Surface Control (Guido)
Start Time: 08:10 AM
End Time: 08:30 AM

10

Captured Surface Control
● We recently proposed an API that allows an application to send wheel and

zoom events to a captured tab

● Use case: zooming and scrolling the captured content

● Initial comments
○ The use case of the local user zooming and scrolling the captured

content is appealing and worth exploring
○ The use case of a remote user zooming and scrolling raises

nontrivial privacy concerns and we shouldn't focus on it at this time
○ The API should not be extended to support other user input such

as keystrokes or mouse presses
○ The UA might be in a better position than the application to

perform these actions
11

Captured Surface Control - original
partial interface CaptureController {

 // Scrolling

 Promise<undefined> sendWheel(CapturedWheelAction action);

 // Zooming

 static sequence<long> getSupportedZoomLevels();

 long getZoomLevel();

 Promise<undefined> setZoomLevel(long zoomLevel);

 attribute EventHandler oncapturedzoomlevelchange;

};

12

Captured Surface Control - new
partial interface CaptureController {

 // Scrolling

 Promise<undefined> captureWheel(HTMLElement? element);

 // Zooming

 static sequence<long> getSupportedZoomLevels();

 long getZoomLevel();

 Promise<undefined> setZoomLevel(long zoomLevel);

 attribute EventHandler oncapturedzoomlevelchange;

};

13

Captured Surface Control - Scrolling
const controller = new CaptureController();

const stream = await
 navigator.mediaDevices.getDisplayMedia({ controller });

const previewTile = document.querySelector('video');

previewTile.srcObject = stream;

// Start forwarding wheel events
await controller.captureWheel(previewTile);

...

// Stop forwarding wheel events
await controller.captureWheel(null);

14

● captureController.captureWheel(element);
○ Forwards all the wheel events dispatched on element to the content

associated with captureController
■ Subject to permission

● new "captured-surface-control" permission
● prompts the user if necessary

■ The UA takes care of the forwarding
■ Offset coordinates for the event are scaled from the size of the

element to the size of the viewport of the captured surface
■ Delta values are preserved

● Main advantages: easier to use and only supports the local use case

Captured Surface Control - Scrolling

15

Captured Surface Control - Zooming
partial interface CaptureController {

 // Scrolling

 Promise<undefined> captureWheel(HTMLElement? element);

 // Zooming

 static sequence<long> getSupportedZoomLevels();

 long getZoomLevel();

 Promise<undefined> setZoomLevel(long zoomLevel);

 attribute EventHandler oncapturedzoomlevelchange;

};

16

● The Zooming use case is trickier, because it involves UI and
applications prefer to build all their UI elements to guarantee a
consistent user experience over letting the UA create the UI

● Proposal: Make remote control require transient user activation for all
setZoomLevel() calls.
○ Mitigates the issue well enough that it's impractical to use it for

remote control
○ Easy to understand, specify and implement
○ The requirement is reasonable for applications
○ This does not work for sendWheel

Captured Surface Control - Zooming

17

Discussion (End Time: 08:30)
●

18

Moving Forward with Mute (Guido)
Start Time: 08:30 AM
End Time: 08:50 AM

19

Moving forward with Mute
● We have discussed mute recently and made progress in some areas:

○ Synchronizing mute state (including UI) across Application, UA and OS is
a good fit for the Media Session API

○ This also includes unmute requests from the application

● There are still areas that need improvement
○ Better interoperability between implementations

20

Moving forward with Mute
● The spec includes language that is roughly equivalent to:

○ Track muted -> no frames (or black frames)
■ Good fit for the user manually muting the track with hardware

switches, or UA/OS controls
■ Chromium uses this definition for audio. IIUC, Safari and Firefox

for video and audio.

○ No frames (or black frames?) -> track muted
■ Fits cases when the track temporarily stops sending frames, but

there is no underlying failure
■ Indirectly works for manual mutes (as long as no frames)
■ Chromium uses this definition for video.

21

Better handling of the no-frames case
○ Ideally, we would use the first part of the definition only, but:

■ The language has been in the spec for years and there is an
implementation (Chromium) that followed it just as long

■ Developers have expressed that they find the direct no-frames signal
useful, even if it is not caused by a user mute

○ Proposal
■ Leave the spec language as is
■ Add a boolean attribute isSendingFrames (name subject to

discussion) to MediaStreamTrackVideoStats

22

Better handling of the no-frames case
○ Advantages

■ Provide developers the signal they currently get with Chromium's
current version of the muted attribute

■ Makes it easier for Chromium to start using the first part of the
definition without creating compatibility problems with applications that
rely on the no-frames definition

■ Improved interoperability across browsers (making muted more
useful)

■ A similar signal can be inferred by an application by looking at the
frame counter in MediaStreamTracksVideoStats and using timeouts,
but having a boolean with the same properties as the old muted
attribute makes it more ergonomic, especially for existing applications
that already use the existing signal.

23

What about black frames?
○ For video tracks, zero-information content can mean black frames or no

frames.
○ Applications can (and do) detect black frames by just analyzing them
○ On some platforms, there are system APIs that make it possible to detect

that the camera is producing black frames due to specific reasons (e.g.,
due to laptop lid down, or OS setting)

○ Proposal:
■ Add two fields to MediaStreamTrackVideoStats

● systemBlackFrames - Black frame counter
● lastFrameWasSystemBlack - Makes it easier for applications to

detect the condition without using timeouts
■ Mark the track muted when this condition is detected

● Black frames are zero-information content, no spec change
expected since the causes are user action)

24

What about black frames?
● Advantages

○ Apps can detect black frames more efficiently
○ The mute signal together with the stat can help the application provide

more accurate information to the user

25

Proposed IDL

partial interface MediaStreamTracksVideoStats {

 readonly attribute unsigned boolean isSendingFrames;

 readonly attribute unsigned long long systemBlackFrames;

 readonly attribute unsigned boolean lastFrameWasSystemBlack;

}

26

Discussion (End Time: 08:50)
●

27

Speaker-selection (Jan-Ivar)
Start Time: 08:50 AM
End Time: 09:10 AM

28

For Discussion Today
mediacapture-output:
● Issue 142 / PR 143: Why prompt for a subset of stored speakers or

speakers setSinkId already accepts?

● Issue 133: The first "audiooutput" MediaDeviceInfo returned from
enumerateDevices() is not the default device when the default device is
not exposed

29

https://github.com/w3c/mediacapture-output/issues/142
https://github.com/w3c/mediacapture-output/pull/143
https://github.com/w3c/mediacapture-output/issues/133

Issue 142: Why prompt for a subset of stored speakers?
How a persisted speaker id was exposed in a past session shouldn’t matter.

PR 143 updates step 5 of the selectAudioOutput() algorithm:

30

https://github.com/w3c/mediacapture-output/issues/142
https://github.com/w3c/mediacapture-output/pull/143
https://w3c.github.io/mediacapture-output/#dom-mediadevices-selectaudiooutput

Issue 133: First audiooutput in enumerateDevices() is not
the default device when the default device is unexposed

enumerateDevices() says the first speakers are the system default speakers:

Websites therefore assume they can do this:

 const defSpkr = await mediaDevices.enumerateDevices()
 .find(d => d.kind == "audio-output");

But speakers aren’t exposed by default so it might be a different one!
This makes it hard to write apps. E.g. some omit a way to reset to default "".

31

https://github.com/w3c/mediacapture-output/issues/133
https://w3c.github.io/mediacapture-main/getusermedia.html#dom-mediadevices-enumeratedevices

Issue 133: First audiooutput in enumerateDevices() is not
the default device when the default device is unexposed

Proposals: If at least one other audio output is exposed, but the one that is
currently the system default is not, prepend an entry for it that looks like this:

A: {kind: "audiooutput", label: [UA defined], groupId: "", deviceId: ""}
B: {kind: "audiooutput", label: [UA defined], groupId: "", deviceId: "default"}

Pros of A: Works with setSinkId(""). No change needed.
Pros of B: avoids selectAudioOutput({deviceId: ""}) which always prompts

Both solve: const defSpkr = await mediaDevices.enumerateDevices()
 .find(d => d.kind == “audio-output”);

Label is up to UA — e.g. might be "" or "System default speakers".
32

https://github.com/w3c/mediacapture-output/issues/133

Discussion (End Time: 09:10)
●

33

webrtc-extensions#159

Scale Resolution Down To (Henrik)
Start Time: 09:10 AM
End Time: 09:30 AM

34

https://github.com/w3c/webrtc-extensions/issues/159

#159: Scale Resolution Down To (Henrik)
The scaleResolutionDownTo API was discussed in May 2023 Virtual Interim.

Recap:
● It’s like scaleResolutionDownBy but expressed in absolute terms (“send

360p”) instead of absolute terms (“downscale by 2” + frame being 720p).
● Motivation:

○ When disabling top layer(s) we want to do the expensive effects
processing on a 360p track instead of a 720p track.

○ Today, changing track resolution on the fly triggers reconfiguration.
Adjusting scaling factors is inherently racy! Avoiding race = glitchy.

There was overall support, I promised to follow-up with details… 1y ago :)
35

https://github.com/w3c/webrtc-extensions/issues/159
https://www.w3.org/2023/05/16-webrtc-minutes.html#t05

#159: Scale Resolution Down To (Henrik)
Proposal:
dictionary RTCRect { unsigned long width, height; } // Or DOMRect but ignore x,y?

dictionary RTCRtpEncodingParameters {
 RTCRect scaleResolutionDownTo;
};

Keep it simple:

● Never upscale, only downscale (if needed).
● Never change aspect ratio (scale down until both sides fit).
● Orientation agnostic (adjust 1280x720 to 720x1280 internally if needed).

API already exists in C++ as requested_resolution (% fixing some bugs!).
● Just surface it to JS with a new name.

36

https://github.com/w3c/webrtc-extensions/issues/159
https://source.chromium.org/chromium/chromium/src/+/main:third_party/webrtc/api/rtp_parameters.h;l=509;drc=b9405c4748cf32b1bc85d74fa3f48f84498409a5

Discussion (End Time: 09:30)
●

37

RTCRtpParameters.codec (Jan-Ivar)

38

Start Time: 09:30 AM
End Time: 09:50 AM

Issue 2987: RTCRtpParameters.codec matching is
probably too strict

TL;DR: Try to align with implementation
The spec needs an RTP stream "selecting codec" algorithm. codec hand-waves:
 "Optional value selecting which codec is used for this encoding's RTP stream. If absent, the user agent
can chose to use any negotiated codec."

WPT expects setting .codec based on static getCapabilities, and then negotiating,
will cause that codec to be used IF it matches (but how closely?) the remote SDP.

There's no explicit prose around doing this in the spec right now, but it definitely
seems to be the intent. The WPT also expects .codec to be automatically unset if
the remote SDP does not contain a match (there's definitely nothing in the spec
about this).

39

https://github.com/w3c/webrtc-pc/issues/2987
https://w3c.github.io/webrtc-pc/#dom-rtcrtpencodingparameters-codec

Issue 2987: RTCRtpParameters.codec matching is
probably too strict

Do we allow UA to clear this parameter.codec (singular) after negotiation?

{ mimeType: 'video/vp9', clockRate: 90000, sdpFmtpLine: 'max-fs=12288;max-fr=60' }

…because the closest match in the negotiated parameters.codecs (plural) is this?
{ mimeType: 'video/vp9', clockRate: 90000, sdpFmtpLine: 'max-fs=12288;max-fr=30', payloadType: 120 }

If so, then UAs are free to chose any negotiated codec anyway, and might take
codec as a hint, and at least send VP9. But having it work in some browsers and
not others would surprise → poor interop. Should we standardize something here?

Instead of clearing, why not let UA update the codec parameter to the 2nd codec?

40

https://github.com/w3c/webrtc-pc/issues/2987

Discussion (End Time: 09:50)
●

41

Wrapup and Next Steps
Start Time: 09:50 AM
End Time: 10:00 AM

42

Next Steps
● Content goes here

43

Thank you

Special thanks to:

WG Participants, Editors & Chairs

44

