
Joint WebRTC WG/SCCG
Meeting

September 14, 2023
17:00 - 18:30 Seville time
8:00 - 9:30 Pacific Time

15:00 - 16:30 UTC

1

W3C WG IPR Policy
● WebRTC WG abides by the W3C Patent Policy:

https://www.w3.org/Consortium/Patent-Policy/
● Only people and companies listed at

https://www.w3.org/groups/wg/webrtc/ipr/ are allowed to
make substantive contributions to the WebRTC WG
specs (first 2 technical items on the agenda)

● The Screen Capture CG works under the W3C
Community Group CLA

2

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/groups/wg/webrtc/ipr/

W3C Code of Conduct
● This meeting operates under W3C Code of Ethics and

Professional Conduct

● We're all passionate about improving WebRTC and the
Web, but let's all keep the conversations cordial and
professional

3

https://www.w3.org/Consortium/cepc/
https://www.w3.org/Consortium/cepc/

Safety Reminders
While attending TPAC, follow the health rules:

● Authorized masks are required indoors at all times. If you need
to remove your mask during the meeting, please keep it short

● Daily test is expected

Please be aware of and respect the personal boundaries of your fellow
participants

https://www.w3.org/2023/09/TPAC/health.html

4

https://www.w3.org/2023/09/TPAC/health.html

Welcome!
● Welcome to the TPAC 2023 joint meeting of

the WEBRTC WG and the SCCG.
● TPAC 2023 Schedule
● Link to slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● Will we be recording the session?
● Volunteers for note taking?

5

https://www.w3.org/2023/09/TPAC/#schedule
https://www.w3.org/2011/04/webrtc/wiki/September_14_2023
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

TPAC 2023 Meeting Schedule
● WebRTC WG: September 12, 2023 (concluded)

○ 11:30 - 16:30 Seville Time
○ Meeting info
○ Slides

● Joint WebRTC/SCCG: September 14, 2023
○ 17:00 - 18:30 Seville Time
○ Meeting Info
○ Slides

● Joint WebRTC/MEDIA September 15, 2023
○ 14:30 - 16:30 Seville Time
○ Meeting Info
○ Slides

6

https://www.w3.org/2011/04/webrtc/wiki/September_12_2023
https://docs.google.com/presentation/d/1vqlz0vbF1JFmKxVfTrhpBwomwu1aiSJz5p-Q0PXNDKA/
https://www.w3.org/2011/04/webrtc/wiki/September_14_2023
https://docs.google.com/presentation/d/1i0tZ1rRFh4Ibn3KxfEpHzEw6ixNKCgWjn1WgSEv01Dw/
https://www.w3.org/2011/04/webrtc/wiki/September_15_2023
https://docs.google.com/presentation/d/1FpCAlxvRuC0e52JrthMkx-ILklB5eHszbk8D3FIuSZ0/

Virtual Meeting Tips (Zoom)
● Both local and remote participants need to be on irc.w3.org

channel #webrtc.
● Use “Raise hand” to get into the speaker queue and “Lower

hand” to get out of the speaker queue.
● To try out WebCodecs over RTCDatachannel (not RTP!) join

using a Browser.
● Please use headphones when speaking to avoid echo.
● Please wait for microphone access to be granted before

speaking.
● Please state your full name before speaking.

7

Issues for Discussion Today
Agenda:
● 17:00 - 17:10: Introduction
● 17:10 - 17:40: Dynamic-switching between any display-surface types
● 17:40 - 18:00: getViewportMedia (capture-current-tab)
● 18:00 - 18:25: Status updates on work of mutual interest
● 18:25 - 18:30: Wrap-up and Next Steps (Chairs)

Time control:
● A warning will be given 2 minutes before time is up.
● Once time has elapsed we will move on to the next item.

8

Dynamic-switching between any
display-surface types
(under WebRTC WG Patent Policy)
Start Time: 17:10
End Time: 17:40

9

Dynamic-switching

● Several browsers allow users the ability to change what they’re sharing
“on the fly.”

○ Chrome - change from one tab to another.
○ Safari - change between different windows, screens.

● Often easier for users than starting a new capture session.
● Managed by the surfaceSwitching option.
● Some limitations remain.

Chrome (any platform) Safari (macOS)

https://www.w3.org/TR/screen-capture/#dom-displaymediastreamoptions-surfaceswitching

Can we extend UA capabilities in this area without any spec changes?
Should we just expect the UA to switch out the source?

If we did, there would be some challenges. In the next slides we will
cover:
1. Audio
2. Methods
3. Auto-pause

Challenge

When a user chooses to dynamically change what they are sharing, they might
also wish to either add or remove audio.

What if they wish to add audio? The current API shape does not support this.

The current API shape essentially says:
● “Audio from the start or never thereafter.”

That’s not a privacy-preserving API shape. It pushes users in a bad direction.

Challenge #1: Audio

Since Region Capture was introduced, MediaStreamTracks now exposes a
method called cropTo(). It is only meaningful for tab-capture; otherwise it
either:
● Throws an error
● The method is not exposed on the subtype of MST the UA

instantiated.

In either case, we note that cropTo() belongs on the track, not on
CaptureController, so that different clones of a track my be cropped to
different targets. (Including having no target.)

Side note (expecting certain objections)

When changing captured surfaces, the set of methods which the application can validly
invoke changes.

The aforementioned cropTo() is one example.
● Only valid when capturing a tab.
● Different capture-targets are valid depending on which tab.

This is a general problem.
● Web applications should not be required to check what they are capturing before

every invocation.
● Many existing applications would be doing it only immediately after gDM resolves,

then setting user-facing controls and forgetting about it.

Challenge #2: Methods

Challenge #3: Auto-pause

As previously discussed in mediacapture-screen-share/issues/255:
● An application might set specific settings and user-facing controls based

on what the user chooses to capture.
● When the user chooses to capture something else, the application needs

to adapt, and might not wish for any new frames to be emitted until it has
had time to adapt.
○ Events are not enough here, e.g. if the track is already plugged into a

PeerConnection. By the time the app sees the events, some frames
will have already been placed on the network.

https://github.com/w3c/mediacapture-screen-share/issues/255

Define a new event-listener. When one is registered, upon a dynamic-switch,
concurrently:
1. Terminate the old tracks. (Behavior of onended events - TBD.)
2. Fire a new event with a new stream. (Potentially different number of tracks.)

That is:
 const controller = new CaptureController();
 controller.addEventListener('switch', (event) => {
 const videoElement = document.getElementById('myVideoElement');
 videoElement.srcObject = event.mediaStream;
 });
 …
 navigator.mediaDevices.getDisplayMedia({ controller });

Proposal outline
(Modulo known issue which is discussed later.)

● Solves all three challenges.
● Up for discussions whether, when the event-listener is not registered, user

agents:
○ MUST / MAY / SHOULD still offer the option to dynamic-switch.
○ MUST / MAY / SHOULD NOT offer the option to dynamic-switch.
○ [Unspecified]

Proposal analysis

Invoking addEventListener should not have side effects.

If we decide to say user agents {MUST / MUST NOT / SHOULD / …} offer certain
options depending on whether an event listener is registered, we might need
to slightly change the API to fit this.

One option would be:

 CaptureController.enableDynamicSwitching(handler);

P.S: Modulo

Discussion (End Time: 17:40)
●

19

getViewportMedia (capture-current-tab)
(under WebRTC WG Patent Policy)
Start Time: 17:40
End Time: 18:00

20

Capturing the current tab - use cases

● Embed a video-conferencing app into another app.
● Embed a third-party app into a video-conferencing app.

21

When capturing one’s own tab, it is possible for the
capturing application to embed arbitrary cross-origin
content (that has neglected to opt-out) and read it.

Some users will approve self-capture without
understanding the risk; sometimes they won’t even read the
prompt at all.

Risks

22

Mitigations
Prior discussions result in consensus that the following set
of mitigations is sufficient:
1. Cross-origin isolation
2. Opt-in by embedded documents

23

1. Cross-origin isolation does not yet enjoy widespread
adoption.

2. An opt-in mechanism for documents has not been
agreed upon. (A candidate exists.)

3. The method of handling absent opt-in remains TBD.

Challenges

24

Given people’s position, it is not realistic to expect the
opt-in requirement to be dropped today.

But if new information comes to light, or new arguments,
we may re-examine the necessity of opt-in to begin with.

For now, let’s proceed under the assumption that we retain
this requirement, and see how to shape it optimally.

Do we really need opt-in?

25

Before we decide what mechanism should be used for opt-in,
we should align on the desired properties.

Should absent opt-in block…
1. …the non-opt-in content from loading?
2. …the non-opt-in content from being captured? And if so…

a. …stop capture of the entire tab?
b. …stop capture of the non-opt-in content?

Absent opt-in

26

I think we should seriously consider option 2a.

● gVM called with non-opt-in content already loaded?
○ Error.

● Non-opt-in content loaded while gVM capture active?
○ Don’t emit a frame until all such content is unloaded.

(Content loaded while dialog active is treated as content
loaded after user approved the capture.)

Preferred option (Elad)

27

Case study

28

Third-party content might be highly incentivized to comply with the
imbeder’s requirements and keep being imbeded and loaded.

If absent opt-in blocks loading, embedders can end up
unintentionally coercing third-party content to approve of being
captured.

It’s much more democratic to allow third-party content to block
capture and still be loaded.

Case study - analysis

29

Feasibility
Can implementations avoid race conditions and ensure
non-opt-in content is never captured?

I believe so.
● During rendering, mark each surface with the set of

origins permitted to capture it.
● Only emit the frame if the disjunction of all these sets

includes the capturing origin.

30

Complicating factor - audio

Whether audio can be treated similarly should be
discussed. (My intuition says yes, but it could be
challenging - let’s loop in the experts.)

31

To ensure graceful handling, we’ll want to add some
mechanism to inform the capturer why the track was muted.
● Bespoke event?
● MuteReason?

Error-handling by the capturer

32

Discussion (End Time: 18:00)
●

33

Status updates on work of mutual interest
Start Time: 18:00
End Time: 18:25

34

Screen Capture CG specs

35

The following specs, currently incubated in the SCCG,
will be presented today:
1. Element Capture
2. Captured Surface Control
3. Captured Mouse Events

https://github.com/screen-share/element-capture/blob/main/README.md
https://github.com/screen-share/captured-surface-control/blob/main/README.md
https://github.com/screen-share/captured-mouse-events/blob/main/README.md

Element Capture

36

● Assume an orthogonal, pre-existing API such as
getDisplayMedia or getViewportMedia was used to initiate
tab-capture.

● Region Capture is an existing API that allows cropping video
MediaStreamTracks.
○ Efficiently: Cropping done by the UA.
○ Robustly: Cropping tracks a target-element.

● Element Capture is essentially a variant of Region Capture that
also removes occluding and occluded content.

Recap

1. Mint a CropTarget for a target-element.
2. Pass it, possibly cross-origin, to holder of MediaStreamTrack.
3. await mst.cropTo(cropTarget);
4. Frames cropped.

a. Target moved? No problem.
b. Target disappeared? No frames.

Recap - Region Capture

Recap - Region Capture Limitations

Enter Element Capture

Differences in results:
● Element not descendant of the target element

are not captured.
○ Neither occluded elements (behind),
○ nor occluding elements (in front).

Differences in activation:
● Use a RestrictionTarget instead of CropTarget.
● Use restrictTo() instead of cropTo().
● Some elements not valid targets.

Element Capture - Delta from Region Capture

Element Capture - Demo
<video>

As always, the user’s privacy is a top priority. This API is safe:
● User grants permission to start capture using pre-existing means.
● User consistently warned that the app has permission to capture the entire tab.
● Even before this API, the contents of the captured tab could change at any time.

○ Navigation
○ Loading of new content
○ Layout changes

● Malicious applications can already subvert the users expectations and capture
something without the user realizing it.
○ Content flashed briefly
○ Low opacity content
○ Piece by piece

Risks

43

Questions? (Element Capture)

44

Captured Surface
Control

45

I see three categories of viable approaches:
1. UA offers users limited control of captured surface
2. UA offers users unlimited control of captured surface
3. UA offers apps limited control of captured surface

The first two options were previously discussed in the SCCG.
This presentation will be focused on the 3rd option.

Possible approaches, generally speaking

After a permissions prompt, allow the capturing application limited control over the
captured surface.
● Scrolling (over coordinates of choice)
● Zooming (of the captured tab)

Benefits of this approach:
● Simple
● Relatively safe (scrolling rarely has side-effects - permission sufficient)
● Solves the challenge of “scroll what?” (Next slide)
● Allows delegation of (limited) control to remote participants

Limited app control of captured surface

const controller = new CaptureController();
const stream =
 await navigator.mediaDevices.getDisplayMedia({ controller });
document.getElementById('video').srcObject = stream;

// Perform a null-action so as to prompt the user for permission.
try {
 await controller.sendWheel({});
} catch (e) {
 return; // Permission denied. Bail.
}

Permission prompts are only displayed when attempting to use the API they gate access to.
A null event is intentionally used to avoid performing an action before the user requests one.

Sample usage 1:
Initiate capture and obtain permission

// Having obtained the user’s permission, we can now relay subsequent
// wheel events to the captured tab.
video.addEventListener("wheel", event => {
 const [x, y] = translateCoordinates(event.offsetX, event.offsetY);
 controller.sendWheel({
 x,
 y,
 wheelDeltaX: event.wheelDeltaX,
 wheelDeltaY: event.wheelDeltaY});
});

translateCoordinates() scales the coordinates in the video-element to those of the captured
surface. Its implementation is left as an exercise for the reader.

Sample usage 2:
Relay scroll events to captured surface

const zoomInButton = document.getElementById('zoomInButton');
zoomInButton.addEventListener('click', async (event) => {
 const oldZoomLevel = await controller.getZoomLevel();
 const newZoomLevel =
 Math.min(oldZoomLevel + 10,
 controller.getMaxZoomLevel());
 controller.setZoomLevel(newZoomLevel);
});

Sample usage 3:
Control zoom-level of captured tabs

Possible capturing-app UX Effect in captured tab

API shape
dictionary CapturedWheelAction {
 int x = 0;
 int y = 0;
 int wheelDeltaX = 0;
 int wheelDeltaY = 0;
};

partial interface CaptureController {
 // 0. Pre-existing and irrelevant methods omitted.
 ...

 // 1. Scrolling
 Promise<undefined> sendWheel(CapturedWheelAction action);

 // 2. Zoom-level
 int getMinZoomLevel();
 int getMaxZoomLevel();

 Promise<int> getZoomLevel();
 Promise<undefined> setZoomLevel(int zoomLevel);
};

Questions? (Captured Surface Control)

55

Captured Mouse
Events

56

Cursor Enhancements (useful for mobile and
accessibility)

https://www.ixeau.com/cursor-pro/
https://www.appblit.com/screegle

https://www.ixeau.com/cursor-pro/
https://www.appblit.com/screegle

Post processing of recordings e.g. screen.studio

https://www.screen.studio/

https://docs.google.com/file/d/108dW0FpcXoqvY6q0z2JCtfJ6_nKUP-4q/preview
https://www.screen.studio/

● In a perfect world, everything is free, and everything works.
● We don’t live in a perfect world.

○ Entire frames have to be re-scanned by encoders with every small change.
○ Delta frames are larger than an update of mouse coordinates.
○ Everything costs more CPU, power and bandwidth than the optimal.

● What if we…
a. Stop capturing the cursor (encoder doesn’t re-scan input)
b. Transmit mouse-coordinates separately from the frames
c. Redraw the cursor on the receiver side

● Would that not lead to some savings?
○ Our initial measurements suggest that it would.

CPU, power and bandwidth savings

60

Extensions under discussion

Currently specified:
● Coordinates

Under discussion:
● Mouse-clicks (buttons)
● Modifier keys (most likely only in conjunction with mouse-clicks)

61

Questions? (Captured Mouse Events)

62

Discussion (End Time: 18:25)
●

63

Wrap-up and Next Steps (Chairs)
Start Time: 18:25
End Time: 18:30

64

Next Steps
● Content goes here

65

Thank you

Special thanks to:

WG and SG Participants, Editors & Chairs

66

