
W3C WebRTC
TPAC 2023 Meeting
Tuesday, September 12, 2023

11:30 - 16:30 Seville Time
09:30 - 14:30 UTC

02:30 - 07:30 Pacific Time

Chairs: Bernard Aboba
Harald Alvestrand
Jan-Ivar Bruaroey 1

W3C WG IPR Policy
● This group abides by the W3C Patent Policy

https://www.w3.org/Consortium/Patent-Policy/
● Only people and companies listed at

https://www.w3.org/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

2

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

W3C Code of Conduct
● This meeting operates under W3C Code of Ethics and

Professional Conduct

● We're all passionate about improving WebRTC and the
Web, but let's all keep the conversations cordial and
professional

3

https://www.w3.org/Consortium/cepc/
https://www.w3.org/Consortium/cepc/

Safety Reminders
While attending TPAC, follow the health rules:

● Authorized masks are required indoors at all times. If you need
to remove your mask during the meeting, please keep it short

● Daily test is expected

Please be aware of and respect the personal boundaries of your fellow
participants

https://www.w3.org/2023/09/TPAC/health.html

4

https://www.w3.org/2023/09/TPAC/health.html

About TPAC 2023 Meetings

● TPAC 2023 Schedule
● Link to slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● Will we be recording the session?
● Volunteers for note taking?
● Future WebRTC WG meetings:

○ October 17
○ November 21
○ December 12

5

https://www.w3.org/2023/09/TPAC/#schedule
https://www.w3.org/2011/04/webrtc/wiki/September_12_2023
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc
https://www.w3.org/2011/04/webrtc/wiki/Main_Page#Meetings
https://www.w3.org/2011/04/webrtc/wiki/October_17_2023
https://www.w3.org/2011/04/webrtc/wiki/November_21_2023
https://www.w3.org/2011/04/webrtc/wiki/December_12_2023

TPAC 2023 Meeting Schedule
● WebRTC WG: September 12, 2023

○ 11:30 - 16:30 Seville Time
○ Meeting info
○ Slides

● Joint WebRTC/SCCG: September 14, 2023
○ 17:00 - 18:30 Seville Time
○ Meeting Info
○ Slides

● Joint WebRTC/MEDIA September 15, 2023
○ 14:30 - 16:30 Seville Time
○ Meeting Info
○ Slides

6

https://www.w3.org/2011/04/webrtc/wiki/September_12_2023
https://docs.google.com/presentation/d/1vqlz0vbF1JFmKxVfTrhpBwomwu1aiSJz5p-Q0PXNDKA/
https://www.w3.org/2011/04/webrtc/wiki/September_14_2023
https://docs.google.com/presentation/d/1i0tZ1rRFh4Ibn3KxfEpHzEw6ixNKCgWjn1WgSEv01Dw/
https://www.w3.org/2011/04/webrtc/wiki/September_15_2023
https://docs.google.com/presentation/d/1FpCAlxvRuC0e52JrthMkx-ILklB5eHszbk8D3FIuSZ0/

WebRTC Use Case Breakout Session
● “WebRTC use cases and requirements under

high-demanding real-time communication scenarios”
○ TPAC 2023: Breakouts schedule (w3.org)

● Wednesday, September 13, 11:00 - 12:00
○ Location: Nervion I, Level -1
○ Calendar entry

● Document:
○ WebRTC live-streaming use cases

7

https://www.w3.org/2023/09/TPAC/breakouts.html#b-9629039f-522a-4578-a06c-561cf26b7e8d
https://www.w3.org/events/meetings/9629039f-522a-4578-a06c-561cf26b7e8d/
https://github.com/webrtc-live-streaming-tf/webrtc-use-cases

HDR Breakout Session
● “HDR on the Web”

○ Discussion of rendering of existing HDR content
(images/video), proposed HDR APIs
(canvas/WebGL/GPU), the need for more expressive
media queries, and interactions with CSS colors.

● Wednesday, September 13, 17:15 - 18:15
○ Location: Nervion-Arenal II Level -1
○ Calendar entry

8

https://github.com/whatwg/html/issues/9112
https://github.com/whatwg/html/issues/9112
https://github.com/ccameron-chromium/webgpu-hdr/blob/main/EXPLAINER.md
https://github.com/w3c/csswg-drafts/issues/9306
https://github.com/w3c/csswg-drafts/issues/9306
https://www.w3.org/events/meetings/009a5b81-0459-4ae4-9b33-f88dd9a9d89f/

WebCodecs Serialization Breakout Session
● “WebCodecs Serialization Format”
● Wednesday, September 13, 16:00 - 17:00

○ Location: Lebrija, First Floor
○ Calendar entry

9

https://www.w3.org/events/meetings/3b5b4c6b-e01a-4862-8b85-d6fde09bd228/

Virtual Meeting Tips (Zoom)
● Both local and remote participants need to be on irc.w3.org

channel #webrtc.
● Use “raise hand” to get into the speaker queue and “lower

hand” to get out of the speaker queue.
● To try out WebCodecs over RTCDatachannel (not RTP!) join

using a Browser.
● Please use headphones when speaking to avoid echo.
● Please wait for microphone access to be granted before

speaking.
● Please state your full name before speaking.

10

Today’s Agenda
● 11:40 - 12:00 State of the WG (Harald Alvestrand)
● 12:00 - 12:40 WebRTC Extended Use Cases (Bernard, Harald, Sun)
● 12:40 - 13:00 Modifications for low latency fanout (Palak)
● 13:00 - 14:00 Lunch Break
● 14:00 - 14:40 WebRTC & Media Capture Issues (Henrik, Jan-Ivar)
● 14:40 - 15:10 Ice Controller API (Sameer Vijakar)
● 15:10 - 15:40 RTPTransport (Peter & Stefan)
● 15:40 - 16:00 SDP negotiation for Encoded Transform (Harald)
● 16:00 - 16:20 Topic TBD (reserved for followup)
● 16:20 - 16:30 Wrapup and Next Steps (Chairs)

Time control:
● A warning will be given 2 minutes before time is up.
● Once time has elapsed we will move on to the next item.

11

State of the WEBRTC WG
(Harald Alvestrand)
Start Time: 11:40
End Time: 12:00

12

External Environment

● WebRTC over RTP is the dominant browser VC
platform (and decent chunks of non-browser)

● WebRTC over RTP is being used in many niche
applications (ex WHIP for recording)

● Explorations of other protocols (MOQ,
WebCodecs over WebTransport) ongoing, but
have not achieved significant deployment traction

13

Activity since TPAC 2022
● Repo activity

○ Mediacapture-main
■ Getting ready for REC (still) - removing non-implemented features

○ Mediacapture-extensions
■ Holding pen for new ideas

○ Webrtc-pc
■ Merging some things from -extensions (when implemented)

○ Webrtc-extensions
■ Holding pen for new ideas

○ Webrtc-stats
■ Living Standard-like. Simplification and removal of Old Stuff

○ Webrtc-nv-use-cases
■ Restructure and attempt to make useful

14

Major new or expanded topics

● Webrtc-encoded-transform
○ New functionality desired

● Webrtc-ice
○ New direction on how to control pursued

● Platform processing for effects and faces
○ Being pursued in some sync with Media WG

● Screen capture
○ Largely pursued in new SCCG community group

15

Things that seem stable

● Mediacapture-transform
● Mediacapture-record
● Mediacapture-fromelement
● Mediacapture-image
● Webtc-priority
● Mst-content-hint
● WebRTC-SVC

16

Discussion (End Time: 12:00)
●

17

WebRTC Extended Use Cases
Start Time: 12:00
End Time: 12:40

18

Proposals from the May and July Meetings
● Rename it. Proposal: “WebRTC Extended Use Cases”. Done.

● Focus on things that can only/best be done by WebRTC (p2p etc)
● Remove use cases that are now met by other standards
● Include use cases that have no requirements but extend RFC 7478
● Remove use cases that don’t get consensus within a few months
● Remove requirements that don’t get consensus within a few months
● Remove use cases that don’t add new requirements. Done.
● Proposed API changes should include changes to the use-case doc
● Define the relationship between this doc and explainers
● Define the relationship between this doc and issues
● Define the relationship between this doc and API proposals
● Broaden the input somehow - perhaps via webrtc.nu ?
● Define what we do with aspirations.

19

What is the relationship of a Use Case To…
● Explainers (How the proposals relate to the use cases)

○ Should explainers link to use cases?
■ Clarifies whether an API proposal is solving a use case
■ Recommendation: Explainers (and API proposals) can

link to use cases, but not required.

20

Proposals from the May and July Meetings
● Rename it. Proposal: “WebRTC Extended Use Cases”. Done.

● Focus on things that can only/best be done by WebRTC (p2p etc)
● Remove use cases that are now met by other standards
● Include use cases that have no requirements but extend RFC 7478
● Remove use cases that don’t get consensus within a few months
● Remove requirements that don’t get consensus within a few months
● Remove use cases that don’t add new requirements. Done.
● Proposed API changes should include changes to the use-case doc
● Define the relationship between this doc and explainers
● Define the relationship between this doc and issues
● Define the relationship between this doc and API proposals
● Broaden the input somehow - perhaps via webrtc.nu ?
● Define what we do with aspirations.

21

What is the relationship of a Use Case To…
● Issues (what specific problems are being referred to)

○ Should a use case link to related Issues?
■ Advantage: Links requirements to specific Issues

whose resolution can be tracked.
■ Recommendation: Use cases may link to issues raised

in a CfC (or to the CfC summary)

22

Proposals from the May and July Meetings
● Rename it. Proposal: “WebRTC Extended Use Cases”. Done.

● Focus on things that can only/best be done by WebRTC (p2p etc)
● Remove use cases that are now met by other standards
● Include use cases that have no requirements but extend RFC 7478
● Remove use cases that don’t get consensus within a few months
● Remove requirements that don’t get consensus within a few months
● Remove use cases that don’t add new requirements. Done.
● Proposed API changes should include changes to the use-case doc
● Define the relationship between this doc and explainers
● Define the relationship between this doc and issues
● Define the relationship between this doc and API proposals
● Broaden the input somehow - perhaps via webrtc.nu ?
● Define what we do with aspirations.

23

What is the relationship of a Use Case To…
● API Proposals (what API proposals relate to the problems)

○ Should a use case link to API proposals?
■ Clarifies whether a use case has API proposals
■ Links use case to an API proposal whose progress can

be tracked
■ Recommendation:

● API proposals can link to use cases.
● However, use cases should not be required to link

to API proposals.

24

For Discussion Today

● Section 3.6: Funny Hats
● Section 3.2: Low Latency Streaming

25

https://w3c.github.io/webrtc-nv-use-cases/#funnyhats*
https://www.w3.org/TR/webrtc-nv-use-cases/#low-latency-streaming

Proprietary + Confidential

The experience with “Funny Hats” implementation (use case 3.6) is that we frequently encounter

the need to pass information across the wire together with the encoded frame. Just like E2EE, this

means that what goes on the wire is NOT in a standard codec format; unlike E2EE, the additional

overhead can be considerable - enough to influence congestion control.

In Google experimentation, we have found that we need:

- SDP negotiation of non-standard codecs (PR #186)

- The ability to designate an outgoing frame as one of those non-standard codecs

- The ability to dispatch an incoming frame to appropriate processing

- The ability to control the decoding of the frame after processing

- The ability to control packetization and depacketization of those frames

Section 3.6: Additional Metadata in Frames

https://w3c.github.io/webrtc-nv-use-cases/#funnyhats*

Status of Section 3.2: Low Latency Streaming
● Section 3.2: Low Latency Streaming

○ Section 3.2.1: Game Streaming
○ Section 3.2.2: Low Latency Broadcast with Fanout

● CfC concluded on January 16, 2023: Summary
○ 6 responses received, 5 in support, 1 no opinion
○ Open Issues mentioned in responses:

■ Issue 80: Access to raw audio data
■ Issue 103: Feedback related to WebRTC-NV Low Latency Streaming Use Case

○ Closed issues mentioned in responses:
■ Issue 85: What is a "node" in the low latency broadcast with fanout use case?
■ Issue 86: Is the DRM requirement in the Low latency Broadcast with Fanout use case satisfied

by data channels?
■ Issue 91: N15 latency control should be formulated in a technology-agnostic way
■ Issue 94: Improvements for game pad input
■ Issue 95: Low-latency streaming: Review of requirements

●

27

https://www.w3.org/TR/webrtc-nv-use-cases/#low-latency-streaming
https://www.w3.org/TR/webrtc-nv-use-cases/#game-streaming
https://www.w3.org/TR/webrtc-nv-use-cases/#auction
https://lists.w3.org/Archives/Public/public-webrtc/2023Jan/0062.html
https://github.com/w3c/webrtc-nv-use-cases/issues/80
https://github.com/w3c/webrtc-nv-use-cases/issues/103
https://github.com/w3c/webrtc-nv-use-cases/issues/85
https://github.com/w3c/webrtc-nv-use-cases/issues/86
https://github.com/w3c/webrtc-nv-use-cases/issues/91
https://github.com/w3c/webrtc-nv-use-cases/issues/94
https://github.com/w3c/webrtc-nv-use-cases/issues/95

Section 3.2.1: Game Streaming

28

Section 3.2.1: Game Streaming
● Issues

○ Issue 80: Access to raw audio data
○ Issue 103: Section 3.2: Feedback relating to WebRTC-NV Low

Latency Streaming Use Case
● PRs

○ PR 118: Clarify Game Streaming Requirements

29

https://github.com/w3c/webrtc-nv-use-cases/issues/80
https://github.com/w3c/webrtc-nv-use-cases/issues/103
https://github.com/w3c/webrtc-nv-use-cases/pull/118

Issue 80: Access to Raw Audio Data

30

Issue 80: Access to Raw Audio Data

31

● Should we add a requirement for access to raw audio data?
● Access to raw audio data often required to implement custom audio

codecs
○ Example: Spatial audio
○ Problem: this requires ‘tricking’ WebRTC into thinking it is sending and

receiving another codec (e.g. Opus).
● Potential requirements

○ SDP negotiation of non-standard codecs (PR #186)
○ The ability to designate an outgoing frame as one of those non-standard codecs
○ The ability to dispatch an incoming frame to appropriate processing
○ The ability to control the decoding of the frame after processing
○ The ability to control packetization and depacketization of those frames

Issue #103: Feedback related to WebRTC-NV Low Latency Streaming Use Case

32

https://github.com/w3c/webrtc-nv-use-cases/issues/103

Issue #103: Feedback related to WebRTC-NV Low Latency Streaming Use Case

33

● With respect to Game Streaming (Section 3.2.1):
○ N37: Current text is not specific.

■ Potential next steps:
● Leave it alone?
● Add/replace with more specific performance requirements (PR

118)
○ N38: Requirement is partially satisfied by jitterBufferTarget.

■ Use case document does not currently link to APIs that relate to the
requirements.

■ Recommendation: no action.

https://github.com/w3c/webrtc-nv-use-cases/issues/103
https://github.com/w3c/webrtc-nv-use-cases/pull/118
https://github.com/w3c/webrtc-nv-use-cases/pull/118

PR 118: Clarify Game Streaming requirements (Section 3.2.1)

● Rationale: Cloud Game Characteristics
● A highly interactive application that depends on continuous visual feedback to

user inputs.
● The cloud gaming latency KPI would track Click to Pixel latency - time elapsed

between user input to when the game response is available at the user display
(where as non-interactive applications may track G2G latency as the KPI).

● Requires low and consistent latency. Desirable C2P latency range is typically 30 -
150ms. A latency higher than 170 ms makes high precision games unplayable.

● Loss of video is highly undesirable. Garbled or corrupt video with fast recovery
may be preferable in comparison to a video freeze.

● Motion complexity can be high during active gameplay scenes.
● Consistent latency is critical for player adaptability. Varying latency requires

players to adapt continuously which can be frustrating and break gameplay.
● The combination of high complexity, ultra low latency and fast recovery will require

additional adaptive streaming and recovery techniques.

34

https://github.com/w3c/webrtc-nv-use-cases/pull/118

PR 118: Clarify Game Streaming requirements (Section 3.2.1)

35

ID Requirement Description Benefits to Cloud Gaming Is it Cloud Gaming
Specific?

N48
(New)

Recovery using
non-key frames

WebRTC must support a mode allows video
decoding to continue even after a frame loss
without waiting for a key frame. This enables
addition of recovery methods such as using
frames containing intra coded macroblocks
and coding units - WebRTC Issue: 15192

Players can continue to game with partially
intelligible video.
Fast recovery from losses on the network

Can be used by any
application where video
corruption is preferred to
video freezes

N49
(New)

Loss of encoder
-decoder
synchronicity
notification

The WebRTC connection should generate
signals indicating to encoder about loss of
encoder-decoder synchronicity (DPB buffers)
and sequence of the frame loss.(RFC 4585
section-6.3.3: Reference Picture Selection
Indication) - Delete of RPSI (Mar/2017)

Fast recovery from losses on network.
Helps application to choose right recovery
method in lossy network.

Can be used by any
application where video
corruption is preferred to
video freezes

N50
(New)

Configurable
RTCP
transmission
interval

Application must be able to configure RTCP
feedback transmission interval (Ex:
Transport-wide RTCP Feedback Message)
- Currently under field trial
“WebRTC-SendNackDelayMs”.

Gaming is sensitive to congestion and
packet loss resulting in higher latency.
Consistent RTCP feedback helps
application to adapt video quality to
varying network (BWE and packet loss).

Can be used by any
application where
latency buildup is not
acceptable.

N51
(New)

Improve
accuracy of
Jitter buffer
control

Extend adaptation of the jitter buffer to
account for jitter in the pipeline upto the
frame render stage - Chromium Issue:
1327251

Increases accuracy of jitter buffer
adaptation and helps maintain consistent
latency

Helps all low latency
applications, but is
necessary for Cloud
gaming

https://github.com/w3c/webrtc-nv-use-cases/pull/118
https://bugs.chromium.org/p/webrtc/issues/detail?id=15192
https://chromiumdash.appspot.com/commit/25d0bdc1bcbd78adabe5dac4ff965434cd83a41f
https://bugs.chromium.org/p/chromium/issues/detail?id=1327251

N48 and N49: Recovery using non-key frames
● At the July meeting, it was pointed out that this is an IETF issue.
● From “Media Transport and Use of RTP in WebRTC” RFC 8834, Section 5.1.4:

36

N48 and N49: Recovery using non-key frames (cont’d)
● draft-aboba-avtcore-hevc-webrtc in “Call for Adoption” in IETF AVTCORE

WG
○ Issue 13 filed relating to RPSI support in HEVC

● Excerpts from GitHub:
○ “RPSI used to be implemented for VP8 and VP9 as feedback of successfully decoded

picture id; It was later removed from the implementation as there seems no good
usage of it for VP8/VP9.”

○ “Currently, libwebrtc does not support RPSI at all. There was an effort many years ago
to try out LTR, but then a custom RTCP message [Loss Notification] was implemented
as RPSI was found to be insufficient in some ways.”
■ See: https://bugs.chromium.org/p/webrtc/issues/detail?id=10336

37

https://github.com/aboba/hevc-webrtc/issues/13
https://source.chromium.org/chromium/chromium/src/+/main:third_party/webrtc/modules/rtp_rtcp/source/rtcp_packet/loss_notification.h;l=21;drc=be74b8058be60096bed9423f218b64a4133e5bb9
https://bugs.chromium.org/p/webrtc/issues/detail?id=10336

Section 3.2.2: Low latency Broadcast w/Fanout

38

Webrtc-NV-Use-Cases 3.2.2 - completed CfC January 2023
Issues mentioned: #80 #85 #86 #91 #94 #95 #103

Google has experimented with this use case.

Conclusions: We need webrtc-encoded-stream modifications for:

- Ability to move frames between PCs (#200)
- Ability to structuredClone frames (#181)
- Ability to modify metadata (#162, use-cases #122)

For our sample use case, congestion management is optional.

Use Case: Low Latency Broadcast with Fanout

39

Proposed requirement change

40

Section 3.2.2: Low latency Broadcast with Fanout
● Open Issues

○ Issue 80: Access to raw audio data (discussed previously)
○ Issue 103: Section 3.2: Feedback relating to WebRTC-NV Low

Latency Streaming Use Case
● PRs

○ PR 123: Clarify Use Case

41

https://github.com/w3c/webrtc-nv-use-cases/issues/80
https://github.com/w3c/webrtc-nv-use-cases/issues/103
https://github.com/w3c/webrtc-nv-use-cases/pull/123

PR 123: Section 3.2.2: Clarify use case (Bernard)

42

● Goal: Focus on “ultra low latency” streaming
○ This use case was originally focused on auctions/betting, which require “ultra low

latency” (glass-glass latency < 500 ms).
■ WebRTC is popular for these “ultra low latency” use cases (e.g. WHIP/WHEP).
■ For ULL streaming, data channel fanout adds too much latency, even with

unreliable/unordered transport:
● Overhead of CMAF containerization/decontainerization

○ DRM may not be needed.
● Dependency on “Low latency MSE” (not standardized)

● Requirements for “low latency” using data channel fanout are covered
elsewhere
○ “File Sharing” use case (Section 3.1): Requirement N13 (datachannel in

workers)
○ “IoT” use case (Section 3.3): Requirement N16 (max retransmissions/timeout)

https://github.com/w3c/webrtc-nv-use-cases/pull/123

43

PR 123: Section 3.2.2: Clarify use case

https://github.com/w3c/webrtc-nv-use-cases/pull/120

Discussion (End Time: 12:40)
●

44

Modifications for Low Latency Fanout
(Palak)
Start Time: 12:40
End Time: 13:00

45

Example setup for redundant transmission

Receiving Peer

Changes frameId,
RTPtimestamp, etc.

Encoded
Transform

getReader.read()

RecvPC1.receiver JS object that
setsMetadata
on the two
incoming
frames to make
them identical
and dedupes
them into a
single frame

Render to
local video
element or
canvas

Send
Encoded
frame to
next peer

SFU/Peer/
Server

RelayPC.sende
r.getWriter()

PlayoutPC.recei
ver.getWriter()

Encoded Frame

getReader.re
ad()

write
(fra

me)

write(frame)RecvPC2.receiver

SFU/Peer/
Server

Encoded Frame

We need webrtc-encoded-stream modifications for:
- Ability to move frames between PCs (#160, #200)
- Ability to call structuredClone() on frames (#181)
- Ability to modify metadata (#162, use-cases #122)

Functionality Needed for Low
Latency Fanout

47

Ability to move frames between
PCs (#160, #200)

- Allows nodes to forward received encoded frame to a relay peer by reading the encoded
frame from the receivingPC and writing it to the relaySenderPC

- Remove restriction clause on streams being limited to only one PC. PR: #201

48

https://github.com/w3c/webrtc-encoded-transform/issues/160
https://github.com/w3c/webrtc-encoded-transform/issues/200
https://github.com/w3c/webrtc-encoded-transform/pull/201

Ability to call structuredClone() on
frames (#181)

- Allows a peer to use an encoded frame and its clone for relaying to other peers and for
local rendering

- Only requires marking frames Serializable. PR: #182

https://github.com/w3c/webrtc-encoded-transform/issues/181
https://github.com/w3c/webrtc-encoded-transform/pull/182

Ability to modify metadata (#162,
use-cases #122)

- Allow a node to update the metadata of frames from different incoming PCs such that
frames with the same payload become interchangeable

- Limit changes to rtpTimestamp (audio and video), frameID and dependencies (video only)

- PR: #202

https://github.com/w3c/webrtc-encoded-transform/issues/162
https://github.com/w3c/webrtc-nv-use-cases/issues/122
https://github.com/w3c/webrtc-encoded-transform/pull/202

Discussion (End Time: 13:00)
●

51

Lunch Break
End Time: 14:00

52

WebRTC & Media Capture (Henrik, Jan-Ivar)
Start Time: 14:00
End Time: 14:40

53

For Discussion Today
● MediaCapture-Extensions

○ MediaStreamTrack Frame Stats API shape (Henrik)
● MediaCapture-Output

○ Issue 137: Undesirable prompt from
selectAudioOutput({deviceId}) if valid device removed (Jan-Ivar)

● WebRTC-PC
○ Issue 2899: No way to observe DataChannel-only transport events in initial

negotiation (Jan-Ivar)

54

https://github.com/w3c/mediacapture-output/issues/137
https://github.com/w3c/webrtc-pc/issues/2899

MediaStreamTrack Frame Stats API shape (Henrik)
 Issue #105 and #98, PR #106

In a previous Virtual Interim we’ve discussed if track stats should be an async or sync API.
 The frame counters live on the media thread, not JS.
 The API shape affects how to surface the data (promise or instant get).

§5.2 Preserve run-to-completion semantics (Web Platform Design Principles) says data
accessible to JS must not update while a JavaScript task is running:

To avoid excessive post tasking, we can cross-thread get the data and then cache it and clear
it in the next task execution cycle. (Atomics, lockless ring buffer, mutex, etc.)

55

https://github.com/w3c/mediacapture-extensions/issues/105
https://github.com/w3c/mediacapture-extensions/issues/98
https://github.com/w3c/mediacapture-extensions/pull/106
https://www.w3.org/2023/05/16-webrtc-minutes.html#t07
https://w3ctag.github.io/design-principles/#js-rtc

MediaStreamTrack Frame Stats API shape (Henrik)
Sync or async?
 const {deliveredFrames, discardedFrames, …} = track.videoStats;

 const {deliveredFrames, discardedFrames, …} = await track.getStats();

A desire to use this API outside of an async context has been expressed.
Extra implementation effort is small (caching). PR #106:

56

https://github.com/w3c/mediacapture-extensions/pull/106

 Firefox (116) implements
 selectAudioOutput!

Here’s a demo with a PLAY button
and a SELECT SPEAKERS button:

This works:
1. Choose SELECT SPEAKERS, pick "Airpods" in prompt, then PLAY → 🎧🎵
2. Refresh page, and hit PLAY → 🎧🎵
But there’s a problem:
3. Refresh page, put Airpods in their case, and hit PLAY → prompt

Users expect a prompt from SELECT SPEAKERS, not from PLAY button. Should 🔊🎵

Issue 137: Undesirable prompt from
selectAudioOutput({deviceId}) if valid device removed

57

https://w3c.github.io/mediacapture-output/#mediadevices-extensions
https://jan-ivar.github.io/dummy/speaker_output.html
https://github.com/w3c/mediacapture-output/issues/137

Behavior here should be an app decision.

Proposal:
● If the User Agent recognizes a removed deviceId (one it used to satisfy), then

reject selectAudioOutput({deviceId}) with "NotFoundError" as a
one-time courtesy instead of prompting.

● Subsequent calls would continue to prompt

This provides apps an opportunity to remove this deviceId from localStorage,
while still detering trackers.

Implementing this should be possible by tracking recently removed devices.

Issue 137: Undesirable prompt from
selectAudioOutput({deviceId}) if valid device removed (Jan-Ivar)

58

https://github.com/w3c/mhttps://github.com/w3c/mediacapture-output/issues/137ediacapture-main/issues/965

On a DataChannel-only peer connection, it’s impossible to access the IceTransport
early enough to observe its events reliably on initial negotiation. E.g.:

 await pc.setLocalDescription();
// const {transport} = pc.getTransceivers()[0]; // works for audio & video
 const {transport} = pc.sctp; // TypeError: pc.sctp is null until "stable"!
 const {iceTransport} = transport;

 iceTransport.onstatechange = () => {...}; // missed events
 iceTransport.ongatheringstatechange = () => {...}; // missed events
 iceTransport.onselectedcandidatepairchange = () => {..}; // can miss prflx?

This seems inconsistent. Should we surface the sctp transport in sLD (and roll it
back if need be) like the other transports?

Issue 2899: No way to observe DataChannel-only transport
events in initial negotiation

59

https://w3c.github.io/webrtc-pc/#idl-def-rtcicetransport
https://github.com/w3c/webrtc-pc/issues/2899

Issue 2899: No way to observe DataChannel-only transport
events in initial negotiation

60

maxMessageSize would need to become nullable like maxChannels is today. E.g.:

 // assuming state is unknown
- if (pc.sctp) console.log(pc.sctp.maxMessageSize);
+ if (pc.sctp?.maxMessageSize != null) console.log(pc.sctp.maxMessageSize);
 if (pc.sctp?.maxChannels != null) console.log(pc.sctp.maxChannels);

Proposal A: do this (surface sctp transport in sLD like other transports)

Proposal B: Do nothing. For DataChannel-only tell people to use:

 pc.oniceconnectionstatechange = () => {...};
 pc.onicegatheringstatechange = () => {...};

https://github.com/w3c/webrtc-pc/issues/2899
https://w3c.github.io/webrtc-pc/#idl-def-rtcsctptransport
https://w3c.github.io/webrtc-pc/#dom-rtcsctptransport-maxchannels

Discussion (End Time: 14:40)
●

61

Ice Controller API (Sameer & Peter)
Start Time: 14:40
End Time: 15:10

62

IceController road map

● Prevent removal of candidate pairs
● Remove candidate pairs
● Control selection of candidate pair
● (?) Observe candidate pair states
● Observe result/RTT of outgoing checks
● Control frequency of outgoing checks of particular candidate pairs
● Prevent outgoing checks of particular candidate pairs
● Control order and timing of outgoing checks
● Observe presence of of incoming checks or media for particular candidate pairs
● Gather local candidates for new network interfaces
● Re-gather local candidates of previously failed network interfaces
● Prevent removal of local candidates
● Remove local candidates
● Construct IceTransport without PeerConnection
● Support forking

Done-ish!

Follow-up!

New!

Next time!

● Goal: Application can choose which candidate pair to use to send data

● ICE RFC 8445 (and subsequent updates - RFC 8838 Trickle ICE and RFC 8863 ICE PAC)
describes candidate pair nomination and selection

○ ICE agent performs connectivity checks and identifies valid candidate pairs
○ At some (unspecified) point, controlling agent picks one candidate pair to nominate
○ Prior to nomination, data can be sent on any valid pair
○ If nomination succeeds, data can only be sent on the nominated pair
○ Post nomination, the ICE agent must not nominate another pair
○ Post nomination, an ICE restart is required to change the selected pairs

● Preferable to avoid ICE restart to change the selected pair
○ Expensive to gather candidate pairs, perform connectivity checks and nominate again

● Sending data on any valid pair prior to nomination is an intentional
decision in RFC 8445

Issue 171 - ICE candidate pair selection

64

https://datatracker.ietf.org/doc/html/rfc8445
https://datatracker.ietf.org/doc/html/rfc8838
https://datatracker.ietf.org/doc/html/rfc8863
https://github.com/w3c/webrtc-extensions/issues/171

● Application can defer nomination of a candidate pair picked by the
controlling ICE agent

○ cancelable icecandidatepairnominate event

● Application can select any valid candidate pair to send data
○ setSelectedCandidatePair sets the selected pair without nomination
○ Both controlling and controlled side can select a candidate pair to send data
○ Only the responsibility to nominate differentiates the two sides
○ Application now has the responsibility & flexibility to synchronize send/receive

● ICE agent may nominate the candidate pair selected by the Application
○ Application can choose to defer this nomination again

partial interface RTCIceTransport {

attribute EventHandler /* RTCIceCandidatePairEvent */ onicecandidatepairnominate;

undefined setSelectedCandidatePair(RTCIceCandidatePair candidatePair);

};

PR 174 - ICE candidate pair selection - Proposal

65

https://github.com/w3c/webrtc-extensions/pull/174

● Goal: Application can remove unused candidate pairs
● Proposal

○ removeCandidatePairs immediately removes the provided pairs
○ non-cancelable icecandidatepairremove event(s) fired after removal

partial interface RTCIceTransport {

attribute EventHandler /* RTCIceCandidatePairEvent */ onicecandidatepairremove;

undefined removeCandidatePairs(sequence<RTCIceCandidatePair> candidatePairs);

};

● …and previously (PR 168)…

partial interface RTCIceTransport {

attribute EventHandler /* RTCIceCandidatePairEvent */ onicecandidatepairadd;

};

PR 175 - ICE candidate pair removal

66

https://github.com/w3c/webrtc-extensions/pull/168
https://github.com/w3c/webrtc-extensions/pull/175

const pc = new RTCPeerConnection({iceServers: [/* ice servers */]});

const transceiver = pc.addTransceiver("video");

await pc.setLocalDescription();

const udp3478Pair = new class {

 constructor() {

 this.promise = new Promise((resolve, reject) => this.resolve = resolve);

 }

 matches(e) {

 return e.local.protocol === 'udp' && e.remote.port === 3478;

 }

}();

const unusedPairs = [];

transceiver.sender.transport.iceTransport.onicecandidatepairadd = (e) => {

 const addedPair = {

 local: e.local,

 remote: e.remote

 };

 if (udp3478Pair.matches(e)) {

 udp3478Pair.resolve(addedPair);

 }

 else {

 unusedPairs.push(addedPair);

 }

};

Sample application - only use a UDP port 3478 candidate pair

67

transceiver.sender.transport.iceTransport.onicecandidatepairremove =

 (e) => {

 if (e.cancelable && udp3478Pair.matches(e)) {

 e.preventDefault();

 }

 // else candidate pair announced by `e` is removed

 };

transceiver.sender.transport.iceTransport.onicecandidatepairnominate =

 (e) => {

 if (!udp3478Pair.matches(e)) {

 e.preventDefault();

 }

 // else UDP 3478 pair announced by `e` is nominated

 };

udp3478Pair.promise.then(pair => {

 transceiver.sender.transport.iceTransport

 .setSelectedCandidatePair(pair);

 transceiver.sender.transport.iceTransport

 .removeCandidatePairs(unusedPairs);

});

Observe result/RTT of outgoing checks

const pc = …;

const ice = pc.getTransceivers()[0].sender.transport.iceTransport;

ice.onchecksend = async(event) => {

 const check = await event.check;

 const response = await check.response;

 if (response) {

 const rtt = response.receivedTime - check.sentTime;

 // … do something with rtt

 if (response.error) {

 // … do something with error …
 }

 } else {

 // … do something with timeout …
 }

};

Prevent outgoing checks

const pc = …;

const ice = pc.getTransceivers()[0].sender.transport.iceTransport;

ice.onchecksend = (event) => {

 if (iDontLikeThisCheck(event.check)) {

 event.preventDefault();

 }

}

Control when ICE checks are sent

const pc = …;

const ice = pc.getTransceivers()[0].sender.transport.iceTransport;

while (true) {

 const candidatePair = await nextTimeToSendCheck();

 const checkSent = ice.sendCheck(candidatePair);

 (async () => {

 const check = await checkSent;

 const response = await check.response;

 if (response) {

 const rtt = response.receivedTime - check.sentTime;

 // … do something with rtt

 }

 … do more stuff …
 })();

}

The WebIDL

partial interface RTCIceTransport {

 Promise<RTCIceCheck> sendCheck()

 attribute EventHandler onchecksend;

}
interface RTCIceCheckSend : Event { // Cancellable

 readonly attribute Promise<RTCIceCheck> check; // Resolves when actually sent

}

interface RTCIceCheck {

 readonly attribute ArrayBuffer transactionId;

 readonly attribute DOMHighResTimeStamp sentTime;

 readonly attribute Promise<RTCIceCheckResponse?> response; // No response == timeout

}

interface RTCIceCheckResponse {

 readonly attribute DOMHighResTimeStamp receivedTime;

 readonly attribute RTCIceCheckResponseError? error; // No error == success

}

Discussion (End Time: 15:10)
●

72

RTPTransport (Peter & Stefan)
Start Time: 15:10
End Time: 15:40

73

Why RtpTransport?

Provide flexibility and control to web apps that want it:

● Custom payloads (perhaps ML-based audio codec)
● Custom packetization
● Custom FEC (perhaps ML-based)
● Custom RTX
● Custom Jitter Buffer (perhaps ML-based)
● Custom BWE (perhaps ML-based)
● Custom bitrate allocation
● Custom metadata (header extensions)
● Custom RTCP messages
● Forwarding

Why "progressive version"?

Make the transition simple

● Works with PeerConnection

● Works with Encoded Streams

● Works with WebCodecs

● Pick which parts you want to replace or keep

PeerConnection.createRtpTransport()

● Like .createDataChannel, sets up ICE, DTLS, and SRTP

● Returns RtpTransport object, with which:
○ You can receive all RTP and RTCP packets for the entire bundle group

(IceTransport/DtlsTransport)

○ You can send any RTP or RTCP packet on with the following restrictions:

i. SRTP (SSRC, seqnum, ROC) can't be reused (would break SRTP)

ii. SRTCP seqnum can't be set (would break SRTCP)

iii. Header extensions used for congestion control can't be set (would break CC)

iv. RTCP feedback used for congestion control can't be sent (would break CC)

v. If you send more than the BWE, packets may be queued/dropped

○ You can get a BWE

Things you can do
● Encode and packetize with custom WASM/ML codec and send
● Get frames from Encoded Streams, packetize yourself, and send
● Get frames from Encoded Streams, apply custom FEC, and send
● Observe incoming NACK and resend with custom RTX behavior
● Receive packets and put in custom jitter buffer implementation

○ Which can use WebCodecs for decode

● Receive packets, depacketize yourself, and inject into Encoded Streams
○ Requires a constructor for EncodedAudioFrame/EncodeVideoFrame

● Observe incoming feedback and do custom BWE
○ as long as it's lower than the built-in CC

● Get frames from Encoded Streams, packetize yourself, attach custom metadata, and send
● Get BWE from RtpTransport, do bitrate allocation yourself, and set bitrates of RtpSenders
● Forward RTP/RTCP packets from one PeerConnection to another, with full control over the

entire packet (modulo SRTP/CC exceptions)

const pc = new RTCPeerConnection({encodedInsertableStreams: true});

const rtpTransport = pc.createRtpTransport();

pc.getSenders().forEach((sender) => {

 pc.createEncodedStreams().readable.

 pipeThrough(createPacketizingTransformer()).pipeTo(rtpTransport.writable);

});

function createPacketizingTransformer() {

 return new TransformStream({

 async transform(encodedFrame, controller) {

 let rtpPackets = myPacketizer.packetize(frame);

 rtpPackets.forEach(controller.enqueue);

 }

 });

}

Example: Send with custom packetization

Example: Receive with custom depacketization

const pc = new RTCPeerConnection({encodedInsertableStreams: true});

const rtpTransport = pc.createRtpTransport();

receiver.ontrack = event => {

 const esWriter = event.receiver.createEncodedStreams().writable.getWriter();

 rtpTransport.onrtppacket = (rtpPacket) => {

 let {vBuffer, esWriter} = receivers[getUniqueStreamIdentifier(rtpPacket)];

 vBuffer.insertPacket(rtpPacket);

 // Requires a constructor for EncodedVideoFrame/EncodedAudioFrame

 while (vBuffer.nextFrameReady()) esWriter.write(vBuffer.getFrame());

 }

}

Example: Receive with custom jitter buffer and built-in depacketization

const receiver = new RTCPeerConnection({encodedInsertableStreams: true});

receiver.ontrack = e => {

 if (e.track.kind == "video") {

 const es = event.receiver.createEncodedStreams({jitterBuffer: false});

 receiveVideo(es.readable.getReader(), es.writable.getWriter());

 }

 else {

 const es = event.receiver.createEncodedStreams();

 receiveAudio(es.readable.getReader(), es.writable.getWriter());

 }

}

function receiveVideo(reader, writer) {

 while (true) {

 const {value: frame, done} = await reader.read();

 if (done) return;

 vBuffer.insertFrame(frame);

 while (vBuffer.nextFrameReady()) writer.write(vBuffer.getFrame());

 }

}

Example: Custom bitrate allocation

const pc = new RTCPeerConnection();

const rtpTransport = pc.createRtpTransport();

rtpTransport.ontargetsendratechanged = () => {

 const rtpSender = pc.getTransceivers()[0];

 const parameters = rtpSender.getParameters();

 parameters.encodings[0].maxBitrate = rtpTransport.targetSendRate;

 rtpSender.setParameters(parameters);

};

RtpPacket

When receiving, the following are "parsed" for you:

● SSRC

● seqnum (+ROC)

● timestamp

● marker bit

● payload type

● CSRCs

● header extensions (ID, value)

● payload

When sending, you provide them and it's serialized for you.

RtcpPacket

When receiving, the following are "parsed" for you (as an array):

● SSRC

● Payload Type

● Payload Subtype (AKA reception report count)

● Payload

When sending, you provide them (as an array) and they are serialized for you

SDP
v=0
o=- 0 0 IN IP4 0.0.0.0
s=
t=0 0
a=ice-ufrag:K86o
a=ice-pwd:j1T4YePMF3i2hYFrV7lmsD
a=fingerprint:sha-256 00:CA:79:9D:AC:D9:0A:B7:36:C9:92:4D:D5:25:FD:47:01:F8:AA:87:A0:0D:B1:DF:B5:20:E8:CD:6B:C4:26:A3
a=setup:passive

m=application 9 UDP/TLS/RTP/SAVPF *
a=extmap:1 http://www.ietf.org/id/draft-holmer-rmcat-transport-wide-cc-extensions-01

● "m=application" means "can be audio, video, or anything"
● "*" means "could be any payload type, with any SSRC, and any header extension

○ a=sendrecv and a=rtcp-mux are assumed/required
● The only header extensions specified are for congestion control
● Can be in a BUNDLE group or not
● This could be the entirety of the SDP (for a forwarder, for example, or when using WebCodecs), or it could be

in addition to m=audio and m=video lines, just like with an SCTP m=application line.

SDP combined with m=audio and m=video

v=0
o=- 0 0 IN IP4 0.0.0.0
s=
t=0 0
a=group:BUNDLE 0 1 2
a=ice-ufrag:K86o
a=ice-pwd:j1T4YePMF3i2hYFrV7lmsD
a=fingerprint:sha-256 00:CA:79:9D:AC:D9:0A:B7:36:C9:92:4D:D5:25:FD:47:01:F8:AA:87:A0:0D:B1:DF:B5:20:E8:CD:6B:C4:26:A3
a=setup:passive
m=application 9 UDP/TLS/RTP/SAVPF *
a=mid:0
a=extmap:1 http://www.ietf.org/id/draft-holmer-rmcat-transport-wide-cc-extensions-01
m=audio 9 UDP/TLS/RTP/SAVPF 99
a=mid:1
a=rtcp-mux
a=sendrecv
a=rtpmap:99 opus/48000/2
m=video 9 UDP/TLS/RTP/SAVPF 100
a=mid:2
a=rtcp-mux
a=sendrecv
a=rtpmap:100 vp8/90000
a=rtcp-fb:100 nack

Discussion (End Time: 15:40)
●

86

SDP Negotiation for Encoded Transform
(Harald Alvestrand)
Start Time: 15:40
End Time: 16:00

87

SDP Negotiation - The Model

● The SDP O/A configures the
available codec lists for encoder
and packetizer

● SetParameters() allows to pick the
codec from that list (new API)

● New functionality is needed to get
the right things to happen for
E2EE and frame-level metadata

88

Encoder Transform Packetizer

SDP
O/A

SDP negotiation - What To Do
Before negotiating with the peer, both sides of an app using a
transform should:
● Add codec (name and parameters) that will be offered in O/A
Nothing in the platform understands those names; both sides
have to add the same names.
If the peer agrees it understands those names, a PT will be
assigned to it.

89

SDP negotiation - the aftermath
Before sending data:
● Choose explicitly the encoder to use for encoding, using

SetParameters
● Tell the transform what PT to assign to post-transform frames
Before receiving data:
● Tell the transform what PT to expect, and what PT to produce
● Tell the decoder to decode frames using the produced PT

using the relevant decoder
The transform transforms, modifying metadata as needed.

90

Proposed Changes since July

● Setting packetizer: Go from “negotiate this codec
with a packetizer attribute” to “Set packetizer /
depacketizer for this PT”
○ Lines up better with setting encoding codec via

SetParameters
● Identifying frames: Switch from PT to MIME type?

○ Would allow MIME type to PT mapping to be done purely in
encoder

○ Adding MIME type to frame has been suggested for other
reasons

91

Details: Payload Types in Transforms
A PayloadType (PT) is a 7-bit integer that indicates the payload embedded in an RTP
frame.
It is used to guide the decoder in selecting the correct depacketization procedure, and,
following that, the correct decoder for the payload; it follows that the packetizer must
know what PT to apply.
The current proposal lets the transform set the frame PT and choose the PT/packetizer
association.
The association between MIME types and PT is set up by SDP offer/answer.
So far, metadata on encoded frames has contained PT, and not MIME type.

QUESTION: Should frames be tagged by MIME type and not by
PT?

92

Discussion (End Time: 16:00)
●

93

Topic TBD
Start Time: 16:00
End Time: 16:20

94

Slide Title Goes Here
● Content goes here

95

Discussion (End Time: 16:20)
●

96

Wrapup and Next Steps (Chairs)
Start Time: 16:20
End Time: 16:30

97

Next Steps
● Content goes here

98

Discussion (End Time: 16:30)
●

99

Thank you

Special thanks to:

WG Participants, Editors & Chairs

100

