
W3C WebRTC
WG Meeting
October 17, 2023

8 AM - 10 AM

Chairs: Bernard Aboba
Harald Alvestrand
Jan-Ivar Bruaroey 1

W3C WG IPR Policy
● This group abides by the W3C Patent Policy

https://www.w3.org/Consortium/Patent-Policy/
● Only people and companies listed at

https://www.w3.org/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

2

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!
● Welcome to the October 2023 interim meeting

of the W3C WebRTC WG, at which we will
cover:
○ Congestion Control API, MediaCapture-ScreenShare,

Mediacapture-Extensions, WebRTC-Extensions, WebRTC-PC,
WebRTC Extended Use Cases, SDP negotiation

● Future meetings:
○ November 21
○ December 12
○ January 16
○ February 20
○ March 19

3

https://www.w3.org/2011/04/webrtc/wiki/Main_Page#Meetings
https://www.w3.org/2011/04/webrtc/wiki/November_21_2023
https://www.w3.org/2011/04/webrtc/wiki/December_12_2023
https://www.w3.org/2011/04/webrtc/wiki/January_16_2024
https://www.w3.org/2011/04/webrtc/wiki/February_20_2024
https://www.w3.org/2011/04/webrtc/wiki/March_19_2024

About this Virtual Meeting
● Meeting info:

○ Now available to WG members via the Calendar.
● Link to latest drafts:

○ https://w3c.github.io/mediacapture-main/
○ https://w3c.github.io/mediacapture-extensions/
○ https://w3c.github.io/mediacapture-image/
○ https://w3c.github.io/mediacapture-output/
○ https://w3c.github.io/mediacapture-screen-share/
○ https://w3c.github.io/mediacapture-record/
○ https://w3c.github.io/webrtc-pc/
○ https://w3c.github.io/webrtc-extensions/
○ https://w3c.github.io/webrtc-stats/
○ https://w3c.github.io/mst-content-hint/
○ https://w3c.github.io/webrtc-priority/
○ https://w3c.github.io/webrtc-nv-use-cases/
○ https://github.com/w3c/webrtc-encoded-transform
○ https://github.com/w3c/mediacapture-transform
○ https://github.com/w3c/webrtc-svc
○ https://github.com/w3c/webrtc-ice

● Link to Slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● The meeting is (still) being recorded. The recording will be public.
● Volunteers for note taking? 4

https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-extensions/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions/
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/mst-content-hint/
https://w3c.github.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://github.com/w3c/webrtc-encoded-transform
https://github.com/w3c/mediacapture-transform
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://www.w3.org/2011/04/webrtc/wiki/July_18_2023#WebRTC_WG_Virtual_Interim
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

W3C Code of Conduct
● This meeting operates under W3C Code of Ethics and

Professional Conduct

● We're all passionate about improving WebRTC and the
Web, but let's all keep the conversations cordial and
professional

5

https://www.w3.org/Consortium/cepc/
https://www.w3.org/Consortium/cepc/

Virtual Interim Meeting Tips
This session is (still) being recorded

● Click to get into the speaker queue.
● Click to get out of the speaker queue.
● Please wait for microphone access to be granted before

speaking.
● If you jump the speaker queue, you will be muted.
● Please use headphones when speaking to avoid echo.
● Please state your full name before speaking.
● Poll mechanism may be used to gauge the “sense of the

room”.

6

Understanding Document Status
● Hosting within the W3C repo does not imply adoption by the

WG.
○ WG adoption requires a Call for Adoption (CfA) on the

mailing list.
● Editor’s drafts do not represent WG consensus.

○ WG drafts do imply consensus, once they’re confirmed
by a Call for Consensus (CfC) on the mailing list.

○ Possible to merge PRs that may lack consensus, if a
note is attached indicating controversy.

7

Issues for Discussion Today
● 08:10 - 08:30 AM Congestion Control API (Harald)
● 08:30 - 08:50 AM Mediacapture-screenshare (Elad)
● 08:50 - 09:20 AM Grab Bag (Henrik, Jan-Ivar & Fippo)
● 09:20 - 09:40 AM SDP Negotiation (Harald)
● 09:40 - 09:55 AM WebRTC Extended Use Cases (Bernard & Sun)
● 09:55 - 10:00 AM Wrapup and Next Steps (Chairs)

Time control:
● A warning will be given 2 minutes before time is up.
● Once time has elapsed we will move on to the next item.

8

Congestion Control API (Harald)
Start Time: 08:10 AM
End Time: 08:30 AM

9

Encoded Transform Congestion Control: Why
● Network capacity is (sometimes) limited
● Sending more than network capacity is Not A Good Thing
● Browser will police the sender - sending more causes discards

So what does this mean for EncodedTransform?
● With no transform: Transport divides capacity between channels, tells the

encoders to behave themselves
○ Transport estimates overhead and subtracts

● With simple transform (no big change in frame size): Don’t have to change
● If encoder’s size and transform’s size don’t match at all, what?

○ Variable size “additional information” (Alpha channel, segmentation)
○ Frames injected from other sources (Late Fanout use case)

● Transform needs to know!
10

Congestion Control: How?
https://github.com/w3c/webrtc-encoded-transform/pull/207

● Expose attributes to say what the “downstream”
available bandwidth is

● Add events to tell of “significant changes”
● Add methods to tell “upstream” of available

bandwidth
● Use cancellable events to distinguish between

“framework should do it” and “I will do it myself”
11

https://github.com/w3c/webrtc-encoded-transform/pull/207

IDL of proposed API
interface mixin RTCRtpScriptSource {
 readonly attribute ReadableStream readable;
 Promise<unsigned long long> generateKeyFrame(optional DOMString
rid);

 Promise<undefined> sendKeyFrameRequest();
 undefined sendBandwidthEstimate(BandwidthInfo info);

};

interface mixin RTCRtpScriptSink {
 readonly attribute WritableStream writable;
 attribute BandwidthInfo bandwidthInfo;

 attribute EventHandler onbandwidthestimate;
 attribute EventHandler onkeyframerequest;
};

[Exposed=DedicatedWorker]
interface RTCRtpScriptTransformer {
 readonly attribute any options;
};
RTCRtpScriptTransformer includes RTCRtpScriptSource;
RTCRtpScriptTransformer includes RTCRtpScriptSink;

12

Blue: Restructuring for clarity

Yellow: New API pieces

interface BandwidthInfo {

readonly attribute long allocatedBitrate;

// bits per second

readonly attribute long availableOutgoingBitrate;

 readonly attribute boolean writable;

};

https://streams.spec.whatwg.org/#readablestream
https://pr-preview.s3.amazonaws.com/w3c/webrtc-encoded-transform/pull/207.html#dom-rtcrtpscriptsource-readable
https://webidl.spec.whatwg.org/#idl-promise
https://webidl.spec.whatwg.org/#idl-unsigned-long-long
https://pr-preview.s3.amazonaws.com/w3c/webrtc-encoded-transform/pull/207.html#dom-rtcrtpscriptsource-generatekeyframe
https://webidl.spec.whatwg.org/#idl-DOMString
https://webidl.spec.whatwg.org/#idl-promise
https://webidl.spec.whatwg.org/#idl-undefined
https://pr-preview.s3.amazonaws.com/w3c/webrtc-encoded-transform/pull/207.html#dom-rtcrtpscriptsource-sendkeyframerequest
https://webidl.spec.whatwg.org/#idl-undefined
https://pr-preview.s3.amazonaws.com/w3c/webrtc-encoded-transform/pull/207.html#bandwidthinfo
https://streams.spec.whatwg.org/#writablestream
https://pr-preview.s3.amazonaws.com/w3c/webrtc-encoded-transform/pull/207.html#dom-rtcrtpscriptsink-writable
https://pr-preview.s3.amazonaws.com/w3c/webrtc-encoded-transform/pull/207.html#bandwidthinfo
https://html.spec.whatwg.org/multipage/webappapis.html#eventhandler
https://pr-preview.s3.amazonaws.com/w3c/webrtc-encoded-transform/pull/207.html#dom-rtcrtpscriptsink-onbandwidthestimate
https://html.spec.whatwg.org/multipage/webappapis.html#eventhandler
https://pr-preview.s3.amazonaws.com/w3c/webrtc-encoded-transform/pull/207.html#dom-rtcrtpscriptsink-onkeyframerequest
https://webidl.spec.whatwg.org/#Exposed
https://webidl.spec.whatwg.org/#idl-any
https://pr-preview.s3.amazonaws.com/w3c/webrtc-encoded-transform/pull/207.html#dom-rtcrtpscripttransformer-options
https://pr-preview.s3.amazonaws.com/w3c/webrtc-encoded-transform/pull/207.html#rtcrtpscripttransformer
https://pr-preview.s3.amazonaws.com/w3c/webrtc-encoded-transform/pull/207.html#rtcrtpscriptsource
https://pr-preview.s3.amazonaws.com/w3c/webrtc-encoded-transform/pull/207.html#rtcrtpscripttransformer
https://pr-preview.s3.amazonaws.com/w3c/webrtc-encoded-transform/pull/207.html#rtcrtpscriptsink
https://webidl.spec.whatwg.org/#idl-long
https://webidl.spec.whatwg.org/#idl-long
https://webidl.spec.whatwg.org/#idl-boolean

Example API usage

Passthrough, but want to handle it myself:
transformer.onbandwidthestimate = (ev) => {

 ev.preventDefault();

 sendBandwidthEstimate(this.bandwidthInfo);

}

I’m adding a kilobyte per second:
Transformer.onbandwidthestimate = (ev) => {

 Let temp = this.bandwidthInfo;

 temp.allocatedBitrate -= 8000;

 this.sendBandwidthEstimate(temp);

 ev.preventDefault();

}
13

Not addressed in this proposal

● Reading and modifying allocation of
bandwidth between senders

● Other actions than “modify upstream
bandwidth targets”
○ However, all the other APIs for influencing senders

remain available

14

Discussion (End Time: 08:30)
●

15

Mediacapture-screenshare (Elad)
Start Time: 08:30 AM
End Time: 08:50 AM

16

For Discussion Today
● MediaCapture-screenshare

○ Issue 276: Handling of contradictory hints
○ Issue 281: Distinguish cancellations from absent OS permissions

17

https://github.com/w3c/mediacapture-screen-share/issues/276
https://github.com/w3c/mediacapture-screen-share/issues/281

// Audio generally not requested,
// but system-audio marked as desired.
navigator.mediaDevices.getDisplayMedia({
 audio: false,
 systemAudio: "include",
});

Contradictory hints - example #1

18

// Audio requested, including an explicit
// request for system-audio,
// but monitors asked to be excluded.
navigator.mediaDevices.getDisplayMedia({
 audio: true,
 systemAudio: "include",
 monitorTypeSurfaces: "exclude"
});

Contradictory hints - example #2

19

Contradictory hints - example #3

// Application requested monitors to be
// displayed most prominently,
// while simultaneously asking for monitors
// to not be offered.
navigator.mediaDevices.getDisplayMedia({
 video: { displaySurface: "monitor" },
 monitorTypeSurfaces: "exclude"
});

20

Above is a snapshot of the getDisplayMedia algorithm in the spec.

Proposal:
● Add a step for validating the interaction between constraints and options and reject

if a contradiction is detected.
● (Probably create a subroutine for it, naming specific possible contradictions.)

Handling of contradictory hints - proposal

21

Sometimes screen-sharing is blocked because the user presses cancel;
maybe the user changed their mind.

Sometimes screen-sharing is blocked because the OS permissions are
configured to block. In that case, some applications might wish to explain that
to the user.

Issue 281: Missing OS permissions - problem description

22

https://github.com/w3c/mediacapture-screen-share/issues/281

Issue 281: Missing OS permissions - proposal

23

(The ctor sets the name attribute to the value “NotAllowedError”.)

https://github.com/w3c/mediacapture-screen-share/issues/281

Possible objection: “Shouldn’t the UA inform the user?”

Answers:
● Not mutually exclusive - we could do both.
● Which change is more likely to happen in the foreseeable future?

○ A bespoke error is trivial to implement.
○ Custom UX to surface an error… Only sounds trivial until you try.

Issue 281: Possible objection

24

https://github.com/w3c/mediacapture-screen-share/issues/281

Discussion (End Time: 08:50)
●

25

Grab Bag (Henrik, Jan-Ivar & Fippo)
Start Time: 08:50 AM
End Time: 09:20 AM

26

For Discussion Today

● Mediacapture-extensions
○ PR #117: Add MediaStreamTrackAudioStats interface (Henrik)

● Mediacapture-main
○ Issue 972: Racy devicechange event design poor interop (Jan-Ivar)
○ Issue 966: Should devicechange fire when the device info

changes? (Jan-Ivar)
● WebRTC-Extensions

○ Issue 146: Exposing decode errors / SW fallback as an event
(Fippo)

● WebRTC-PC
○ Issue 2888: setCodecPreferences vs. unidirectional codecs (Fippo)

27

https://github.com/w3c/mediacapture-extensions/pull/117
https://github.com/w3c/mediacapture-main/issues/972
https://github.com/w3c/mediacapture-main/issues/966
https://github.com/w3c/webrtc-extensions/issues/146
https://github.com/w3c/webrtc-pc/issues/2888

PR #117: Add MediaStreamTrackAudioStats interface (Henrik)

track.stats now exposes video frame counters (delivered, discarded, total).

What about audio stats? Issue #96: Migrate capture metrics from
RTCAudioSourceStats to MediaStreamTrack method.
● Previously covered in the April 18th Virtual Interim.
● Decision: Move stats, but express them in terms of audio frames, not audio

samples.

The PR for this never landed due to discussions around API shape. New PR:

28

https://github.com/w3c/mediacapture-extensions/pull/117
https://github.com/w3c/mediacapture-extensions/issues/96
https://docs.google.com/presentation/d/1pt1iEtqv49etzQ_u8E4QOpE3MUqQHbH6H8KlSW7MpfA/edit#slide=id.g22e9343079e_1_1

PR #117: Add MediaStreamTrackAudioStats interface (Henrik)

Delivered and dropped frames definition are similar to the video stats.
Measuring delay:
deliveredFramesDelay / deliveredFrames

is the average delay of each audio frame from capture to delivery.

Measuring glitches:
droppedFramesDuration / (deliveredFramesDuration + droppedFramesDuration)

is the percentage of audio that was dropped
(i.e. not processed in a timely manner).

Alternatively totalFrames instead of droppedFrames?
Where droppedFrames = totalFrames - deliveredFrames

For consistency with video stats.
29

https://github.com/w3c/mediacapture-extensions/pull/117

The devicechange event follows § 7.7. Use plain Events for state, but its "state
information in the target object." is not available synchronously, a footgun: 🦶🔫

navigator.mediaDevices.ondevicechange = async () => {
 const devices = await navigator.mediaDevices.enumerateDevices();
 // 100+ milliseconds may have passed (letting devicechange fire multiple times!)
 // The app compares devices vs. app.oldDevices to detect insertion/removal
 app.oldDevices = devices; // stored state
}

100+ milliseconds may pass before the app examines devices, during which Chrome
fires devicechange 7 more times (for putting on my AirPods). The async app code
runs 8 times interleaved with itself. Any application state access becomes suspect.

Hard to reason about for no reason → Trial & error to pass QA → reliance on browser
side-effects undetected → fails in the field in other browsers → poor interoperability.

Issue 972: Racy devicechange event design has poor
interoperability (Jan-Ivar)

30

https://w3c.github.io/mediacapture-main/getusermedia.html#event-mediadevices-devicechange
https://w3ctag.github.io/design-principles/#state-and-subclassing
https://dom.spec.whatwg.org/#dom-event-target
https://github.com/w3c/mediacapture-main/issues/972#issue-1914353140
https://github.com/w3c/mediacapture-main/issues/972

Proposal: Include the devices in the event:

navigator.mediaDevices.ondevicechange = ({devices}) => {
 // The app compares devices vs. oldDevices to detect changes
 app.oldDevices = devices;
}

Avoids all races and is 100% backwards compatible (modeled on trackEvent.streams).

Issue 972: Racy devicechange event design has poor
interoperability (Jan-Ivar)

31

https://w3c.github.io/webrtc-pc/#dom-rtctrackevent-streams
https://github.com/w3c/mediacapture-main/issues/972

The spec says: No.

It indicates a change in devices available to the browser (i.e. OS change). Apps rely on it to
support auto-switching in reaction to users inserting or removing devices during calls.
Safari incorrectly fires it as part of getUserMedia, confusing apps → poor interop.

Issue 966: Should devicechange fire when the device info
changes? (Jan-Ivar)

32

https://w3c.github.io/mediacapture-main/#event-mediadevices-devicechange
https://github.com/w3c/mediacapture-main/issues/972#issue-1914353140
https://github.com/w3c/mediacapture-main/issues/966

To capture #966 discussion: imagine a rhetorical enumeratedevicechange event that
fires for any delta in enumerateDevices output. It would include firing for non-OS
reasons: changes in the site’s device information exposure or its permission.

Use case: Refresh an in-content picker

Option A: no change (workaround: app calls enumerateDevices after gUM)
Option B: add a new enumeratedevicechange event
Option C: change devicechange to work like enumeratedevicechange

● C seems web incompatible (would interfere with auto-switching, e.g. Safari)
● Device information exposure is already deterministic (set in gUM)
● Permission loss is already detectable using permissions.query

Proposal: A

Issue 966: Should devicechange fire when the device info
changes? (Jan-Ivar)

33

https://w3c.github.io/mediacapture-main/#dfn-canexposecamerainfo
https://github.com/w3c/mediacapture-main/issues/966

Issue 146: Exposing decode errors / SW fallback as an event

● Discussed at TPAC
● Generally in favor of “Proposal B”

○ Also expose error event on RTCRtpSender and RTCRtpReceiver
○ Confirm that decision

● Minor changes to naming
○ rtpTimestamp instead of timestamp
○ spatialIndex instead of rid

● Distinct errors for sender & receiver or common one?
○ spatialIndex only known for sender

● spatialIndex only for simulcast
○ SVC encoders considered monolithic

● Ready for PR?

34

https://github.com/w3c/webrtc-extensions/issues/146
https://lists.w3.org/Archives/Public/www-archive/2023Sep/att-0014/WEBRTC-MEDIA-2023-09-15.pdf#page=25

Issue 2888: setCodecPreferences vs. unidirectional codecs

● libWebRTC: call setCodecPreferences with H264 only and get VP8
○ Drive-by discovery from H264 woes on Android

● Root cause: some codecs are send-only, others receive-only
○ H264 profiles in particular
○ but also VP9 and some FEC mechanisms
○ Windows: 21 receive codecs, 14 send codecs

● Where does input for setCodecPreferences come from?
○ Assumption: RTCRtpSender.getCapabilities(‘video’).codecs
○ Then reorder or filter the list

35

https://github.com/w3c/webrtc-pc/issues/2888
https://bugs.chromium.org/p/webrtc/issues/detail?id=15396

Issue 2888: setCodecPreferences vs. unidirectional codecs

● setCodecPreferences algorithm:

● Looks at both send and receive sets
○ Regardless of transceiver direction

● Does not specify how codecs are compared
○ H264 profile-level-asymmetry-allowed

36

https://github.com/w3c/webrtc-pc/issues/2888
https://w3c.github.io/webrtc-pc/#dom-rtcrtptransceiver-setcodecpreferences

Issue 2888: setCodecPreferences vs. unidirectional codecs

● Take directionality into account (from comment)
○ setCodecPreferences with a recv-only codec on a sendrecv or sendonly

transceiver should throw
○ Incompatible changes to transceiver direction after setCodecPreferences

should throw
● Specify how codecs are compared

○ Already done for SDP O/A

Ready for PR?

37

https://github.com/w3c/webrtc-pc/issues/2888
https://github.com/w3c/webrtc-pc/issues/2888#issuecomment-1674388178

Discussion (End Time: 09:20)
●

38

SDP Codec Negotiation (Harald)
Start Time: 09:20 AM
End Time: 09:40 AM

39

SDP Negotiation - The Model

● The SDP O/A configures the
available codec lists for encoder
and packetizer

● SetParameters() allows to pick the
codec from that list (new API)

● New functionality is needed to get
the right things to happen for
E2EE and frame-level metadata

40

Encoder Transform Packetizer

SDP
O/A

SDP negotiation - What To Do
Before negotiating with the peer, both sides of an app using a
transform should:
● Add codec (name and parameters) that will be offered in O/A
Nothing in the platform understands those names; both sides
have to add the same names.
If the peer agrees it understands those names, a PT will be
assigned to it.

41

SDP negotiation - processing data
Before sending data:
● Choose explicitly the encoder to use for encoding, using

SetParameters
● Tell the transform what PT to assign to post-transform frames
● Tell the packetizer how to packetize that PT

Before receiving data:
● Tell the depacketizer how to depacketize the PT agreed on
● Tell the transform what PT to expect, and what PT to produce
● Tell the decoder to decode frames using the produced PT using the

relevant decoder
The transform transforms, modifying metadata as needed.

42

Timeline of proposal
● March 21, 2023: Issue and outline of proposal presented at March interim
● June 14, 2023: First version of PR #186 uploaded
● June 27, 2023: Proposal presented at June interim.

○ Minutes say: “RESOLUTION: Adopt PR #186 with details to be discussed in the PR”
● Sept 12, 2023: Presented at TPAC. Minutes say:

○ “Summary: PT to MimeType -> arguments on both sides. Setting packetisers is also
accepted but needs further discussion.”

● Oct 12, 2023: Revised PR with TPAC changes discussed at editors
meeting.

The result of the Oct 12 discussion was a number of arguments that suggested
the whole approach should be rethought and different approaches considered.
Some of those are now mentioned on the PR discussion.
A FAQ section has been added to the explainer on some of the choices.

43

https://docs.google.com/presentation/d/1OfAN3sfVXhvOBCqgLMegrNcHz7-V4qTnuHjBP3gLdgg/edit#slide=id.g221c1a2bfa8_1_6
https://github.com/w3c/webrtc-encoded-transform/pull/186
https://docs.google.com/presentation/d/1lti3-GFsJ1iU2pXFjfSzeK8xyKj6Ohng9D6HndPNPLc/edit#slide=id.g253c68beb34_1_0
https://www.w3.org/2023/06/27-webrtc-minutes.html#t12
https://www.w3.org/2023/09/12-webrtc-minutes.html#t14

Evaluation of status

● 7 months and 3 presentations to WG should
be enough to expect that the basic approach
has consensus.

● Details can always be changed later, but
blocking the PR hampers experimentation.

● Proposal: Instruct the editors team to merge
the PR as-is.

44

Discussion (End Time: 09:40)
●

45

WebRTC Extended Use Cases
Start Time: 09:40 AM
End Time: 09:55 AM

46

For Discussion Today

● Section 3.2: Low Latency Streaming

47

https://www.w3.org/TR/webrtc-nv-use-cases/#low-latency-streaming

Status of Section 3.2: Low Latency Streaming
● Section 3.2: Low Latency Streaming

○ Section 3.2.1: Game Streaming
○ Section 3.2.2: Low Latency Broadcast with Fanout

● CfC concluded on January 16, 2023: Summary
○ 6 responses received, 5 in support, 1 no opinion
○ Open Issues mentioned in responses:

■ Issue 80: Access to raw audio data (TPAC 2023: move to audio codec use case)
■ Issue 103: Feedback related to WebRTC-NV Low Latency Streaming Use Case

● PR 124: Requirement N38 is satisfied by jitterBufferTarget
○ Closed issues mentioned in responses:

■ Issue 85: What is a "node" in the low latency broadcast with fanout use case?
■ Issue 86: Is the DRM requirement in the Low latency Broadcast with Fanout use case satisfied

by data channels?
■ Issue 91: N15 latency control should be formulated in a technology-agnostic way
■ Issue 94: Improvements for game pad input
■ Issue 95: Low-latency streaming: Review of requirements

●
48

https://www.w3.org/TR/webrtc-nv-use-cases/#low-latency-streaming
https://www.w3.org/TR/webrtc-nv-use-cases/#game-streaming
https://www.w3.org/TR/webrtc-nv-use-cases/#auction
https://lists.w3.org/Archives/Public/public-webrtc/2023Jan/0062.html
https://github.com/w3c/webrtc-nv-use-cases/issues/80
https://github.com/w3c/webrtc-nv-use-cases/issues/103
https://github.com/w3c/webrtc-nv-use-cases/pull/124
https://github.com/w3c/webrtc-nv-use-cases/issues/85
https://github.com/w3c/webrtc-nv-use-cases/issues/86
https://github.com/w3c/webrtc-nv-use-cases/issues/91
https://github.com/w3c/webrtc-nv-use-cases/issues/94
https://github.com/w3c/webrtc-nv-use-cases/issues/95

Section 3.2.2: Low Latency Broadcast w/fanout

49

Section 3.2.2: Low Latency Broadcast w/fanout
● PR 123: Section 3.2.2: Clarify Use Cases

○ Focus is now on auctions (as originally suggested in Tim’s PR).
○ Church services, Webinars and Town Hall meetings removed

■ These use cases typically do not require ultra low latency and can be
addressed without RTP fanout. Examples:
● RTCDataChannel fanout (Peer5)
● IETF MoQ, using WebCodecs + WebTransport with CDN caching

○ Sporting events removed
■ Typically requires content protection, which RTP does not support.

● DRM supported via CMAF transport (MoQ or RTCDataChannel)
■ Support for content protection under investigation in WebCodecs.

● Issue 41: Support for content protection

50

https://github.com/w3c/webrtc-nv-use-cases/pull/124
https://github.com/w3c/webcodecs/issues/41

PR 123: Section 3.2.2: Clarify Use Cases

51Ready to merge?

https://github.com/w3c/webrtc-nv-use-cases/pull/124

Section 3.2.1: Game Streaming

52

Section 3.2.1: Game Streaming
● Issues

○ Issue 103: Section 3.2: Feedback relating to WebRTC-NV Low
Latency Streaming Use Case

● PRs
○ PR 124: Requirement N38 is satisfied by jitterBufferTarget
○ PR 118: Clarify Game Streaming Requirements

■ Follow up N48, 49, 50 feedback
■ Clarification on N51 requirement

53

https://github.com/w3c/webrtc-nv-use-cases/issues/103
https://github.com/w3c/webrtc-nv-use-cases/pull/124
https://github.com/w3c/webrtc-nv-use-cases/pull/118

Issue #103: Feedback related to WebRTC-NV Low Latency Streaming Use Case

54

https://github.com/w3c/webrtc-nv-use-cases/issues/103

PR 124: Requirement N38 is satisfied by jitterBufferTarget

55

Ready to merge?

https://github.com/w3c/webrtc-nv-use-cases/pull/124

PR 118: Clarify Game Streaming requirements (Section 3.2.1)

● Rationale: Cloud Game Characteristics
● A highly interactive application that depends on continuous visual feedback to

user inputs.
● The cloud gaming latency KPI would track Click to Pixel latency - time elapsed

between user input to when the game response is available at the user display
(where as non-interactive applications may track G2G latency as the KPI).

● Requires low and consistent latency. Desirable C2P latency range is typically 30 -
150ms. A latency higher than 170 ms makes high precision games unplayable.

● Loss of video is highly undesirable. Garbled or corrupt video with fast recovery
may be preferable in comparison to a video freeze.

● Motion complexity can be high during active gameplay scenes.
● Consistent latency is critical for player adaptability. Varying latency requires

players to adapt continuously which can be frustrating and break gameplay.
● The combination of high complexity, ultra low latency and fast recovery will require

additional adaptive streaming and recovery techniques.

56

https://github.com/w3c/webrtc-nv-use-cases/pull/118

PR 118: Clarify Game Streaming requirements (Section 3.2.1)

57

ID Requirement Description Benefits to Cloud Gaming Is it Cloud Gaming
Specific?

N48
(New)

Recovery using
non-key frames

WebRTC must support a mode allows video
decoding to continue even after a frame loss
without waiting for a key frame. This enables
addition of recovery methods such as using
frames containing intra coded macroblocks
and coding units - WebRTC Issue: 15192

Players can continue to game with partially
intelligible video.
Fast recovery from losses on the network

Can be used by any
application where video
corruption is preferred to
video freezes

N49
(New)

Loss of encoder
-decoder
synchronicity
notification

The WebRTC connection should generate
signals indicating to encoder about loss of
encoder-decoder synchronicity (DPB buffers)
and sequence of the frame loss.(RFC 4585
section-6.3.3: Reference Picture Selection
Indication) - Delete of RPSI (Mar/2017)

Fast recovery from losses on network.
Helps application to choose right recovery
method in lossy network.

Can be used by any
application where video
corruption is preferred to
video freezes

N50
(New)

Configurable
RTCP
transmission
interval

Application must be able to configure RTCP
feedback transmission interval
- Need to set transmission interval for
Transport-wide RTCP along with
“WebRTC-SendNackDelayMs(field-trial)”.

Gaming is sensitive to congestion and
packet loss resulting in higher latency.
Consistent RTCP feedback helps
application to adapt video quality to
varying network (BWE and packet loss).

Can be used by any
application where
latency buildup is not
acceptable.

N51
(New)

Improve
accuracy of
Jitter buffer
control

Extend adaptation of the jitter buffer to
account for jitter in the pipeline upto the
frame render stage - WebRTC Issue:15535

Increases accuracy of jitter buffer
adaptation and helps maintain consistent
latency

Helps all low latency
applications, but is
necessary for Cloud
gaming

https://github.com/w3c/webrtc-nv-use-cases/pull/118
https://bugs.chromium.org/p/webrtc/issues/detail?id=15192
https://chromiumdash.appspot.com/commit/25d0bdc1bcbd78adabe5dac4ff965434cd83a41f
https://bugs.chromium.org/p/webrtc/issues/detail?id=15535

N48 and N49: Recovery using non-key frames (cont’d)

58

● IETF discussion relating to reference feedback in HEVC
○ Draft adopted in AVTCORE WG as draft-ietf-avtcore-hevc-webrtc

■ Github issues: https://github.com/aboba/hevc-webrtc/issues
■ In RFC 7798 Section 8.3, use of RPSI for positive acknowledgment is deprecated,

used only to indicate decoding of a reference by the client.
■ HEVC usage of RPSI different from VP8 (positive acknowledgement)

○ Guidance on RPSI implementation RP#17 will meet our requirements
○ Will pursue LNTF RTCP message as a short-term solution
○ Will continue to pursue on the RPSI approach and find a way to meet the codec

agnostic concern raised by RPSI RTCP feedback support · Issue #13

https://github.com/aboba/hevc-webrtc/issues
https://github.com/aboba/hevc-webrtc/pull/17
https://github.com/aboba/hevc-webrtc/issues/13

N48 and N49: Recovery using non-key frames (cont’d)

59

● Regarding Non-Keyframe based Recovery
○ RTP de-packetization and framing would need to be updated to recover

using non-key frame.
■ Currently RTP receiver stops providing frames to decoder on

packet loss.
■ Need a way to start providing subsequent completely received

non-key frames to decoder.
■ Requires decoder API support (only encoder API discussed at

TPAC)

N50: Configurable RTCP transmission interval (cont’d)
● Currently Transport-wide congestion control 02 provides way to configure

Transport wide CC feedback
○ This is not reliable as sender request might get lost in network resulting

in no feedback.
○ Sending extra headers results into reduced payload size.
○ Sender request jitter shows up in feedback receive jitter.

● We want to have a API to set interval for Transport wide CC feedback

60

https://webrtc.googlesource.com/src/+/refs/heads/main/docs/native-code/rtp-hdrext/transport-wide-cc-02/

N51:Improve accuracy of Jitter buffer control
● As the Cloud gaming service supports higher resolution(4K) and higher frame rate(120p), we

found that webrtc has many assumptions on the it’s implementation assuming default video
frame rates 60fps and render delay as 10ms etc.
○ third_party/webrtc/modules/video_coding/timing/timing.h

■ static constexpr TimeDelta kDefaultRenderDelay = TimeDelta::Millis(10);

■ static constexpr int kDelayMaxChangeMsPerS = 100;

○ 1327251 - Use render time and RTP timestamps in low-latency video path - chromium

■ This bug tracks the work with making the signalling to the compositor explicit and always setting a reference
time as well as removing some 60fps assumptions by instead using the actual RTP timestamps to determine
the frame rate.

● So it make hard to control the latency through the Jitter buffer, so want to propose the
implementation for getting the correct value on the rendering on the device.

■ 15535:Jitter buffer to account for jitter in the pipeline up to the frame render stage

61

https://blog.google/products/chromebooks/geforce-now-baldurs-gate-iii/
https://source.chromium.org/chromium/chromium/src/+/main:third_party/webrtc/api/units/time_delta.h;drc=f3ee53147a677fb8d5fac5a83e68a41041c66758;bpv=1;bpt=1;l=33
https://source.chromium.org/chromium/chromium/src/+/main:third_party/webrtc/modules/video_coding/timing/timing.h;drc=f3ee53147a677fb8d5fac5a83e68a41041c66758;bpv=1;bpt=1;l=56?gsn=kDefaultRenderDelay&gs=KYTHE%3A%2F%2Fkythe%3A%2F%2Fchromium.googlesource.com%2Fcodesearch%2Fchromium%2Fsrc%2F%2Fmain%3Flang%3Dc%252B%252B%3Fpath%3Dthird_party%2Fwebrtc%2Fmodules%2Fvideo_coding%2Ftiming%2Ftiming.h%23ewOMoF4JJdG9-dHIZhJop6020zmAAvtVm-QapBA4DjU
https://source.chromium.org/chromium/chromium/src/+/main:third_party/webrtc/api/units/time_delta.h;drc=f3ee53147a677fb8d5fac5a83e68a41041c66758;bpv=1;bpt=1;l=33
https://source.chromium.org/chromium/chromium/src/+/main:third_party/webrtc/api/units/time_delta.h;drc=f3ee53147a677fb8d5fac5a83e68a41041c66758;bpv=1;bpt=1;l=46
https://source.chromium.org/chromium/chromium/src/+/main:third_party/webrtc/modules/video_coding/timing/timing.h;drc=f3ee53147a677fb8d5fac5a83e68a41041c66758;bpv=1;bpt=1;l=57?gsn=kDelayMaxChangeMsPerS&gs=KYTHE%3A%2F%2Fkythe%3A%2F%2Fchromium.googlesource.com%2Fcodesearch%2Fchromium%2Fsrc%2F%2Fmain%3Flang%3Dc%252B%252B%3Fpath%3Dthird_party%2Fwebrtc%2Fmodules%2Fvideo_coding%2Ftiming%2Ftiming.h%23EV3bwWCHhXp_lb2qafN6lgChtNYosSNEFDKBYIIEcGM
https://bugs.chromium.org/p/chromium/issues/detail?id=1327251
https://bugs.chromium.org/p/webrtc/issues/detail?id=15535

Discussion (End Time: 09:55)
●

62

Wrapup and Next Steps
Start Time: 09:55 AM
End Time: 10:00 AM

63

Title Goes Here
● Content goes here

64

Thank you

Special thanks to:

WG Participants, Editors & Chairs

65

