
W3C WebRTC
WG Meeting
November 21, 2023

8 AM - 10 AM

Chairs: Bernard Aboba
Harald Alvestrand
Jan-Ivar Bruaroey 1

W3C WG IPR Policy
● This group abides by the W3C Patent Policy

https://www.w3.org/Consortium/Patent-Policy/
● Only people and companies listed at

https://www.w3.org/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

2

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!
● Welcome to the November 2023 interim

meeting of the W3C WebRTC WG, at which
we will cover:
○ MediaCapture-ScreenShare, WebRTC Extended Use Cases,

RtpTransport, Mediacapture-Extensions, WebRTC-Extensions,
Encrypted Transform, WebRTC-SVC

● Future meetings:
○ December 12
○ January 16
○ February 20
○ March 19

3

https://www.w3.org/2011/04/webrtc/wiki/Main_Page#Meetings
https://www.w3.org/2011/04/webrtc/wiki/December_12_2023
https://www.w3.org/2011/04/webrtc/wiki/January_16_2024
https://www.w3.org/2011/04/webrtc/wiki/February_20_2024
https://www.w3.org/2011/04/webrtc/wiki/March_19_2024

About this Virtual Meeting
● Meeting info:

○ https://www.w3.org/2011/04/webrtc/wiki/November 21_2023
● Link to latest drafts:

○ https://w3c.github.io/mediacapture-main/
○ https://w3c.github.io/mediacapture-extensions/
○ https://w3c.github.io/mediacapture-image/
○ https://w3c.github.io/mediacapture-output/
○ https://w3c.github.io/mediacapture-screen-share/
○ https://w3c.github.io/mediacapture-record/
○ https://w3c.github.io/webrtc-pc/
○ https://w3c.github.io/webrtc-extensions/
○ https://w3c.github.io/webrtc-stats/
○ https://w3c.github.io/mst-content-hint/
○ https://w3c.github.io/webrtc-priority/
○ https://w3c.github.io/webrtc-nv-use-cases/
○ https://github.com/w3c/webrtc-encoded-transform
○ https://github.com/w3c/mediacapture-transform
○ https://github.com/w3c/webrtc-svc
○ https://github.com/w3c/webrtc-ice
○ https://github.com/w3c/webrtc-rtptransport

● Link to Slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● The meeting is (still) being recorded. The recording will be public.
● Volunteers for note taking?

4

https://www.w3.org/2011/04/webrtc/wiki/November_21_2023#WebRTC_WG_Virtual_Interim
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-extensions/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions/
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/mst-content-hint/
https://w3c.github.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://github.com/w3c/webrtc-encoded-transform
https://github.com/w3c/mediacapture-transform
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://github.com/w3c/webrtc-rtptransport
https://www.w3.org/2011/04/webrtc/wiki/November_21_2023#WebRTC_WG_Virtual_Interim
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

W3C Code of Conduct
● This meeting operates under W3C Code of Ethics and

Professional Conduct

● We're all passionate about improving WebRTC and the
Web, but let's all keep the conversations cordial and
professional

5

https://www.w3.org/Consortium/cepc/
https://www.w3.org/Consortium/cepc/

Virtual Interim Meeting Tips
This session is (still) being recorded

● Click to get into the speaker queue.
● Click to get out of the speaker queue.
● Please wait for microphone access to be granted before

speaking.
● If you jump the speaker queue, you will be muted.
● Please use headphones when speaking to avoid echo.
● Please state your full name before speaking.
● Poll mechanism may be used to gauge the “sense of the

room”.

6

Understanding Document Status
● Hosting within the W3C repo does not imply adoption by the

WG.
○ WG adoption requires a Call for Adoption (CfA) on the

mailing list.
● Editor’s drafts do not represent WG consensus.

○ WG drafts do imply consensus, once they’re confirmed
by a Call for Consensus (CfC) on the mailing list.

○ Possible to merge PRs that may lack consensus, if a
note is attached indicating controversy.

7

Issues for Discussion Today
● 08:05 - 08:40 AM Grab Bag (Henrik, Fippo, Sameer, Jan-Ivar, Florent)
● 08:40 - 09:00 AM SDP Codec Negotiation (Harald)
● 09:00 - 09:20 AM RtpTransport (Harald, Bernard & Peter)
● 09:20 - 09:40 AM Mediacapture-screen-share (Elad)
● 09:40 - 09:55 AM WebRTC Extended Use Cases (Bernard & Sun)
● 09:55 - 10:00 AM Wrapup and Next Steps (Chairs)

Time control:
● A warning will be given 2 minutes before time is up.
● Once time has elapsed we will move on to the next item.

8

#
#
#

Grab Bag
Start Time: 08:05 AM
End Time: 08:40 AM

9

For Discussion Today
● Mediacapture-Extensions (Henrik & Harald)

○ Issue 121: Background blur: unprocessed video should be mandatory
○ Issue 129: [Audio-Stats] Disagreement about audio dropped counters

(Henrik)
● WebRTC-Extensions (Fippo & Henrik)

○ Issue 146: Exposing decode errors/SW fallback as an event
● WebRTC-SVC (Bernard)

○ Issue 92: Align exposing scalabilityMode with WebRTC “hardware
capabilities” check

● WebRTC-Encoded Transform (Fippo)
○ PR 212: Describe data attribute

● WebRTC-Extensions (Sameer)
○ PR 175: Add RTCIceTransport method to remove pairs 10

https://github.com/w3c/mediacapture-extensions/issues/121
https://github.com/w3c/mediacapture-extensions/issues/129.
https://github.com/w3c/webrtc-extensions/issues/146
https://github.com/w3c/webrtc-svc/issues/92
https://github.com/w3c/webrtc-encoded-transform/pull/212
https://github.com/w3c/webrtc-extensions/pull/175

Issue 121: Background Blur: Unprocessed video should be mandatory

● For background blur and similar platform effects, potential for
confusion when effects can be applied both in the application and the
platform.
○ Users don’t know where to turn it effects off
○ Combined app + platform processing may cause unintended

effects. Examples:
■ Double blur
■ Competing face touchups and background replacements
■ Unintended activation of emoji reactions

● Proposal: such capabilities “MUST support constraint=false”
○ Ensures that the application can turn processing off and get an

unprocessed video feed.

11

https://github.com/w3c/mediacapture-extensions/issues/121

Issue 129: [Audio-Stats] Disagreement about audio dropped counters

The WG decided to add the following metrics (April and October Virtual Interims):

Allows calculating dropped frames and glitch ratios, a measure of audio quality.

Drops can happen by OS:
● Causes: device bugs, OS bugs, CPU starvation, UA underperforming, etc.
● UA can get info from OS (e.g. CrOS) or deduce based on timestamps (e.g. macOS).

Drops can happen by User Agent:
● IPC delays, processing delays, UA bugs.

BUT… Audio glitches are rare and difficult for an app to affect on a case-by-case basis.
12

https://github.com/w3c/mediacapture-extensions/issues/129
https://www.w3.org/2023/04/18-webrtc-minutes.html#t05
https://www.w3.org/2023/10/17-webrtc-minutes.html

Issue 129: [Audio-Stats] Disagreement about audio dropped counters
There’s an alleged problem:
1. Frame drops are usually a sign of UA bugs.
2. If they happen (bug or not), the app can’t save itself. “Catastrophic.”
3. Conclusion: We shouldn’t expose this to JS.

Google disagrees with both the premises and the conclusion. Apps needs to monitor quality:
● A/B testing.

○ Real-world data has shown that app features (e.g. affecting performance or triggering
new JS or UA code paths) can improve or regress audio quality, including glitches.

● Understanding app-specific bug reports of individual users (e.g. upload quality graphs).
○ Is bad audio due to OS, UA, device, app bugs, capture stack, other?
○ Flag when something is wrong.

● An app being able to identify issues it is experiencing is a Good Thing.
● Intent to Prototype shows dev interest from Microsoft Teams, GoTo Meetings and Zoom.

Decision needed: Should audio frame drops be exposed to JS? 13

https://github.com/w3c/mediacapture-extensions/issues/129
https://groups.google.com/a/chromium.org/g/blink-dev/c/vUbD_psbPL8

Issue 146: Exposing decode errors/SW fallback as an event

● Simplified proposal
○ Align with resolution of WebCodecs Issue 669, (Media WG)
○ EncodingError for input data errrors

■ Omit rid until proven necessary
○ OperationError to indicate a resource problem

● Privacy seems fine, see this comment
● Ready for PR?

14

https://github.com/w3c/webrtc-extensions/issues/146
https://github.com/w3c/webcodecs/issues/669
https://www.w3.org/2023/05/30-mediawg-minutes.html#t03
https://github.com/w3c/webrtc-stats/issues/730#issuecomment-1463119620

Issue 92: Align exposing scalabilityMode with WebRTC “hardware
capabilities” check

● Issued filed by PING in w3cping/privacy-request#117
○ Concern about use of scalabilityMode discovery for hardware

fingerprinting.
● WebRTC-SVC relies on Media Capabilities API for discovery

○ Media Capabilities API indicates if a configuration is “supported”
“power efficient” or “smooth”.
■ Issue 209 covers privacy issues in Media Capabilities
■ Today, support for “powerEfficient” SVC is rare.

● Simulcast often preferred to spatial SVC to save power.

15

https://github.com/w3c/webrtc-svc/issues/92
https://github.com/w3cping/privacy-request/issues/117
https://github.com/w3c/media-capabilities/issues/209

Issue 92: Align exposing scalabilityMode with WebRTC “hardware
capabilities” check

● WebRTC-SVC API does not expose hw info, only support for
scalabilityMode values.
○ Equivalent to MediaCapabilities returning “supported” (not gated on user

permission)
○ Can call RTCRtpSender.setParameters() or addTransceiver() with

RTCRtpEncodingParameters.codec to test scalabilityMode support.
○ Section 4.2.1: addTransceiver() validation

■ If sendEncodings contains any encoding with a RTCRtpEncodingParameters.codec value codec
exists and where the same encoding's scalabilityMode value is not supported by codec,
throw an OperationError.

○ Section 4.2.2: setParameters() validation
■ If encodings contains any encoding with an existng RTCRtpEncodingParameters.codec value

codec, where the same encoding's scalabilityMode value is not supported by codec.

16

https://github.com/w3c/webrtc-svc/issues/92
https://www.w3.org/TR/webrtc/#dom-rtcrtpencodingparameters
https://infra.spec.whatwg.org/#map-exists
https://www.w3.org/TR/webrtc-svc/#dom-rtcrtpencodingparameters-scalabilitymode
https://webidl.spec.whatwg.org/#dfn-throw
https://webidl.spec.whatwg.org/#operationerror
https://www.w3.org/TR/webrtc/#dom-rtcrtpencodingparameters
https://www.w3.org/TR/webrtc-svc/#dom-rtcrtpencodingparameters-scalabilitymode

MediaCapabilities on MacBook Air M2 (Safari Tech Preview 183)
https://webrtc.internaut.com/mc/

17

chrome://gpu info

https://webrtc.internaut.com/mc/

PR 212: Describe data

● The specification does not describe the format of the encoded frame data
○ Codec-specific, with some surprises
○ addition of mimeType allows describing this
○ PR adds table with informative references for a few mimeTypes

● SVC behavior needs to be described too
○ Called once per spatial layer with same RTP timestamp
○ “Two-time pad” if E2EE KDF depends only on RTP timestamp and not

frameId
○ Q: does simulcast behavior need special mention too?

● Underlying packetizer makes assumptions about format
○ E.g. H264 packetization needs to retain annex-b NALUs with start codes

● Caveat: output and input may not be the same
○ packetization may drop some parts like AV1 temporal OBUs

● Please review!
18

https://github.com/w3c/webrtc-encoded-transform/pull/212
https://www.rfc-editor.org/rfc/rfc3711#section-9.1
https://bugs.chromium.org/p/webrtc/issues/detail?id=11886&
https://bugs.chromium.org/p/chromium/issues/detail?id=1498928

PR 175: Add RTCIceTransport method to remove pairs

 Promise<undefined> removeCandidatePair(RTCIceCandidatePair pair);

● What is the use case?
○ App cancels nomination & selects a different candidate pair
○ Now app wants to stop pinging other pairs and release resources

● What does "remove" mean?
○ "Tell ICE agent that app does not want to use this pair in this session"
○ Remove pair from (all) Checklists ⟹ no more pings
○ Update Checklist states ⟹ Failed if all pairs removed or Failed
○ Free unpaired candidates ⟹ release resources
○ Removed pairs cannot be added back (unless regathering supported)

● Is an Array argument needed?
○ Useful if app selects a pairs and wants to stop pinging all others
○ Not essential, but can reduce thread hops when bulk removing 19

https://github.com/w3c/webrtc-extensions/pull/175
https://webidl.spec.whatwg.org/#idl-promise
https://webidl.spec.whatwg.org/#idl-undefined
https://pr-preview.s3.amazonaws.com/sam-vi/webrtc-extensions/pull/175.html#dom-rtcicetransport-removecandidatepair
https://www.w3.org/TR/webrtc/#dom-rtcicecandidatepair

Issue 2170: Data channel default binaryType value is 'blob'

● DataChannel.binaryType has 2 possible values “blob” and “arraybuffer”
● “arraybuffer” is implemented in all implementations.
● “blob” implementation is missing in Chromium based browsers.
● “blob” is the current standard default value.

○ Chromium and WebKit use “arraybuffer” by default.
○ Safari correctly use “blob” by default.

● Many applications rely on Chromium or WebKit’s default “arraybuffer”
binaryType explicitly, breaking compatibility with Firefox. Changing the
default value to “blob” would break those.

● Compatibility with WebSocket may not be considered as important now.

● Proposal: For the sake of interoperability, we propose that the default
value is changed to “arraybuffer”.

20

https://github.com/w3c/webrtc-pc/issues/2170

Discussion (End Time: 08:40)
●

21

SDP Codec Negotiation (Harald)
Start Time: 08:40 AM
End Time: 09:00 AM

22

Issue 186: New API for SDP negotiation
After discussion with Jan-Ivar who thought the API was too complex, a
revised proposal:

● Add transceiver function:
transceiver.addCodec(RTCRtpCodec codec, RTCRtpCodec packetizationMode)

● Can only be called while transceiver is being created (just like transform)

● Add utility helper:
pc.addCodecCapability(DOMString kind, RTCRtpCodec codec, RTCRtpCodec packetizationMode)

The utility helper merely executes the transceiver function for any newly
created transceiver.
Functionality is the same as before.

https://github.com/w3c/webrtc-encoded-transform/pull/186

Debated point: API on transceiver or on transform?

● This has been debated in the webrtc-editors meeting, but is
really a WG-level issue

● The right decision is to place it on the transceiver.
○ The transceiver is already closely entangled with the SDP negotiation
○ It’s where we set other functions that affect SDP negotiations
○ The transform is only concerned with the movement of frames
○ If we ever get senders/receivers that are detached from SDP, they may still

have transforms in them. They should not have SDP linkage.
○ If we ever get “one-ended transforms” (which are unlikely to be transforms),

several use cases will still need the SDP negotiation API. Separation of
concerns argues against requiring a transform in order to set SDP.

Present proposal - API on transceiver

Encoder Transform Packetizer

SDP negotiation
module

Browser
capabilities Offer/Answer

Packets

Application
Transceiver API

Configuration
Packets

With API on transform

Encoder Transform Packetizer

SDP negotiation
module

Browser
capabilities Offer/Answer

Packets

Application
Transceiver API

Configuration
Packets

Open issue: MIME type or PT?

● The format of a frame may be indicated by its
PT (a number, looked up in the PC’s mapping
table)

● It may also be indicated by its MIME type (a
string), which is PC independent - but more
complex to match

● Which of those should a transform change?

27

Discussion (End Time: 09:00)
●

28

RtpTransport
Start Time: 09:00 AM
End Time: 09:20 AM

29

RtpTransport

1. Review and current state
2. Related API discussions

a. BWE
b. Forwarding

3. Responding to feedback from last time
a. Using existing m-lines
b. Workers
c. WHATWG streams

30

RtpTransport

1. Review and current state
2. Related API discussions

a. BWE
b. Forwarding

3. Responding to feedback from last time
a. Using existing m-lines
b. Workers
c. WHATWG streams

31

Review and current state

● There was general agreement on adding an API
for sending and receiving RTP/RTCP packets

● For doing lots of custom things like custom
payloads, packetization, protection, metadata…

● By incrementally building on PeerConnection,
Encoded Streams, and WebCodecs

● So we made a repository with an explainer
● And now we're iterating on it 32

https://github.com/w3c/webrtc-rtptransport/
https://github.com/w3c/webrtc-rtptransport/blob/main/explainer.md

RtpTransport

1. Review and current state
2. Related API discussions

a. BWE
b. Forwarding

3. Responding to feedback from last time
a. Using existing m-lines
b. Workers
c. WHATWG streams

33

BWE API

My proposal: Build BWE API on RtpTransport

partial interface RtpTransport {

 attribute BandwidthInfo bandwidthInfo;

 attribute EventHandler onbandwidthestimate;

};

partial interface BandwidthInfo {

 readonly attribute long availableOutgoingBitrate;

};
34

BWE API

You may also want a way to get to it with existing m-lines:

partial interface RtpSender {

 attribute RtpTransport rtpTransport;

};

partial interface RtpSender {

 attribute RtpTransport rtpTransport;

};

35

RtpTransport

1. Review and current state
2. Related API discussions

a. BWE
b. Forwarding

3. Responding to feedback from last time
a. Using existing m-lines
b. Workers
c. WHATWG streams

36

Forwarding API

My proposal: Use RtpTransport for forwarding

● Get packets from remote senders S1, S2, S3
● Send packets to remote receivers R1, R2, R3
● Modify RTP/RTCP packets: PT, SSRC, seqnum, payload, …
● Use BWE on RtpTransport for rate control

37

RtpTransport

1. Review and current state
2. Related API discussions

a. BWE
b. Forwarding

3. Responding to feedback from last time
a. Using existing m-lines
b. Workers
c. WHATWG streams

38

Using existing m-lines

● Add RtpReceiver/RtpSender.rtpTransport
(from a few slides agao)

● But two big questions:
○ What are you prevented from sending?
○ Is built-in demux worth it?

39

What are you prevented from sending?

● Unnegotiated PT? Easy to check
● Invalid Payload? Not easy to check
● Unnegotiated Header Extension ID? Easy
● Invalid Header Extension Value? Not Easy
● Unnegotiated SSRC? MIDs allow any
● Unnegotiated MID/RID? Not too hard
● Unnegotiated RTCP type
● All the m-lines are recvonly/inactive? Easy 40

What are you prevented from sending?

● So… "bumper lanes" are unnegotiated PTs, Header
Extension IDs, MIDs, RIDs, directions, and RTCP types

● But if you really want to send them, you just have to munge
the SDP to make them "negotiated", and then you can

● In other words, the web app can turn off the bumper lanes
via SDP munging

● So why not make it easy?
rtpTransport.bumperLanesEnabled = false

41

What are you prevented from sending?

Proposal: allow disabling bumper lanes, and keep them simple
and easy to implement

42

Is built-in demux worth it?

● RTP demux is easy (RFC 8843, Section 9.2)
● Some RTCP is easy (PLI, FIR, NACK)
● Some RTCP doesn't make sense (CC feedback)
● Some RTCP is impossible (custom)
● And you have to deal with compound RTCP

○ Break it up before demux?

43

Is built-in demux worth it?

Proposal: build in RTP demux, but not RTCP demux

44

RtpTransport

1. Review and current state
2. Related API discussions

a. BWE
b. Forwarding

3. Responding to feedback from last time
a. Using existing m-lines
b. Workers
c. WHATWG streams

45

Workers

● Realistically a "send worker" will want a way to send RTP,
receive RTCP (feedback), and get BWE updates; maybe more

● Realistically a "receive worker" will want a way to receive
RTP, send RTCP (feedback), receive RTP, and maybe more

● Option A: pull off "parts" of RtpTransport and transfer those
● Option B: just transfer the whole of RtpTransport

to several workers

46

RtpTransport

1. Review and current state
2. Related API discussions

a. BWE
b. Forwarding

3. Responding to feedback from last time
a. Using existing m-lines
b. Workers
c. WHATWG streams

47

WHATWG Streams

● Good when you have/want back pressure
● RTCP does not have back pressure
● RTP has no back pressure on the receive side
● RTP could have back pressure on the send side,

but do you really want that?

48

WHATWG Streams

● Good when you want a filtered view
● RtpTransport.receiveRtp({pt: 99}) or

RtpTransport.receiveRtp({mid: "a"}) or

RtpTransport.receiveRtcp({type: 206})

49

WHATWG Streams

Proposal: Don't use WHATWG streams except for
filtered views when receiving, if we decide to add
that

50

RtpTransport

1. Review and current state
2. Related API discussions

a. BWE
b. Forwarding

3. Responding to feedback from last time
a. Using existing m-lines
b. Workers
c. WHATWG streams

4. Bonus (if time allows) 51

Bonus #1: Modify Packets
● Problem

○ Existing RtpSender wants to send packets to the network
■ But you want to modify them before they go out
■ Easy: sending modified ones to the network via RtpTransport
■ Hard: getting unmodified ones from RtpSender

○ Existing RtpReceiver wants to receive packets from the network
■ But you want to modify them before coming in
■ Easy: receiving unmodified ones from the network via RtpTransport
■ Hard: pushing the modified ones into RtpReceiver

● Solution: an "inverted" RtpTransport
○ Packets into the RtpTransport go into the PeerConnection as if they came from

the network
○ Packet from the RtpTransport come out of the PeerConnection as if they were

going to the network
○ You could actually hack one of these with a local PC => local RtpTransport

Bonus #2: RTP over WebTransport
const wt = new WebTransport(url);

const writer = wt.datagrams.writable.getWriter();

let rtpPackets = myPacketizer.packetize(frame, mtu);

await sendRtpPackets(writer, rtpPackets);

async function sendRtpPackets(writer, rtpPackets) {

 for (const rtpPacket of rtpPackets) {

 await writer.ready;

 writer.write(rtpPacket.toArrayBuffer()).catch(() => {});

 }

}

Discussion (End Time: 09:20)
●

54

Mediacapture-screen-share (Elad)
Start Time: 09:20 AM
End Time: 09:40 AM

55

For Discussion Today
● MediaCapture-screen-share

○ Issue 276: Handling of contradictory hints
○ Issue 281: Distinguish cancellations from absent OS permissions

56

https://github.com/w3c/mediacapture-screen-share/issues/276
https://github.com/w3c/mediacapture-screen-share/issues/281

// Audio generally not requested,
// but system-audio marked as desired.
navigator.mediaDevices.getDisplayMedia({
 audio: false,
 systemAudio: "include",
});

Contradictory hints - example #1

57

// Audio requested, including an explicit
// request for system-audio,
// but monitors asked to be excluded.
navigator.mediaDevices.getDisplayMedia({
 audio: true,
 systemAudio: "include",
 monitorTypeSurfaces: "exclude"
});

Contradictory hints - example #2

58

Contradictory hints - example #3

// Application requested monitors to be
// displayed most prominently,
// while simultaneously asking for monitors
// to not be offered.
navigator.mediaDevices.getDisplayMedia({
 video: { displaySurface: "monitor" },
 monitorTypeSurfaces: "exclude"
});

59

Above is a snapshot of the getDisplayMedia algorithm in the spec.

Proposal:
● Add a step for validating the interaction between constraints and options and reject

if a contradiction is detected.
● (Probably create a subroutine for it, naming specific possible contradictions.)

Handling of contradictory hints - proposal

60

Sometimes screen-sharing is blocked because the user presses cancel;
maybe the user changed their mind.

Sometimes screen-sharing is blocked because the OS permissions are
configured to block. In that case, some applications might wish to explain that
to the user.

Issue 281: Missing OS permissions - problem description

61

https://github.com/w3c/mediacapture-screen-share/issues/281

Issue 281: Missing OS permissions - proposal

62

(The ctor sets the name attribute to the value “NotAllowedError”.)

https://github.com/w3c/mediacapture-screen-share/issues/281

Possible objection: “Shouldn’t the UA inform the user?”

Answers:
● Not mutually exclusive - we could do both.
● Which change is more likely to happen in the foreseeable future?

○ A bespoke error is trivial to implement.
○ Custom UX to surface an error… Only sounds trivial until you try.

Issue 281: Possible objection

63

https://github.com/w3c/mediacapture-screen-share/issues/281

Discussion (End Time: 09:40)
●

64

WebRTC Extended Use Cases
Start Time: 09:40 AM
End Time: 09:55 AM

65

For Discussion Today

● Section 3.2: Low Latency Streaming

66

https://www.w3.org/TR/webrtc-nv-use-cases/#low-latency-streaming

Status of Section 3.2: Low Latency Streaming
● Section 3.2: Low Latency Streaming

○ Section 3.2.1: Game Streaming
○ Section 3.2.2: Low Latency Broadcast with Fanout

● CfC concluded on January 16, 2023: Summary
○ 6 responses received, 5 in support, 1 no opinion
○ Open Issues mentioned in responses:

■ Issue 103: Feedback related to WebRTC-NV Low Latency Streaming Use Case
○ Moved issues

■ Issue 80: Access to raw audio data (TPAC 2023: move to audio codec use case)

○ Closed issues/PRs
■ Issue 85: What is a "node" in the low latency broadcast with fanout use case?
■ Issue 86: Is the DRM requirement in the Low latency Broadcast with Fanout use case satisfied

by data channels?
■ Issue 91: N15 latency control should be formulated in a technology-agnostic way
■ Issue 94: Improvements for game pad input
■ Issue 95: Low-latency streaming: Review of requirements
■ PR 124: Requirement N38 is satisfied by jitterBufferTarget (partial fix for Issue 103)

●
67

https://www.w3.org/TR/webrtc-nv-use-cases/#low-latency-streaming
https://www.w3.org/TR/webrtc-nv-use-cases/#game-streaming
https://www.w3.org/TR/webrtc-nv-use-cases/#auction
https://lists.w3.org/Archives/Public/public-webrtc/2023Jan/0062.html
https://github.com/w3c/webrtc-nv-use-cases/issues/103
https://github.com/w3c/webrtc-nv-use-cases/issues/80
https://github.com/w3c/webrtc-nv-use-cases/issues/85
https://github.com/w3c/webrtc-nv-use-cases/issues/86
https://github.com/w3c/webrtc-nv-use-cases/issues/91
https://github.com/w3c/webrtc-nv-use-cases/issues/94
https://github.com/w3c/webrtc-nv-use-cases/issues/95
https://github.com/w3c/webrtc-nv-use-cases/pull/124
https://github.com/w3c/webrtc-nv-use-cases/issues/103

Section 3.2.2: Low Latency Broadcast w/fanout

68

PR 123: Use Case Goals
● Proposed refocus on auctions (originally suggested by Tim Panton).

○ Online auctions require ultra low latency (more important than quality)
○ Need for participant feedback
○ DRM typically not required
○ IETF WISH WG: ULL ingestion and distribution via WebRTC (WHIP/WHEP)
○ Low latency use cases like Church services, Webinars removed

■ Use streaming technology (e.g. LL-HLS), not WebRTC
■ Fanout requirements already covered by RTCDataChannel requirements (e.g. worker

support) in Section 3.1: File Sharing.
● P2P Fanout for Auctions: Data Channel transport not a good fit

○ Issues with backpressure, due to decoupling of event loop and receive window
○ SCTP transport implements NewReno, but low latency congestion control required
○ Need to implement RTCP-style feedback (e.g. PLI) and FEC/RED in the

application
○ Transport mode issues

■ Reliable/ordered transport: issues with latency, HoL blocking, buffer size
■ Unreliable/unordered transport: app needs to reimplement NACK/RTX 69

https://github.com/w3c/webrtc-nv-use-cases/pull/124

PR 123: Section 3.2.2: Clarify Use Cases

70

https://github.com/w3c/webrtc-nv-use-cases/pull/124

Section 3.2.1: Game Streaming

71

Section 3.2.1: Game Streaming
● Issues

○ Issue 103: Section 3.2: Feedback relating to WebRTC-NV Low
Latency Streaming Use Case

● PRs
○ PR 125: Clarify Requirement N37
○ PR 118: Clarify Game Streaming Requirements

■ Follow up N48, 49, 50 feedback
■ Clarification on N51 requirement

72

https://github.com/w3c/webrtc-nv-use-cases/issues/103
https://github.com/w3c/webrtc-nv-use-cases/pull/125
https://github.com/w3c/webrtc-nv-use-cases/pull/118

Issue #103: Feedback related to WebRTC-NV Low Latency Streaming Use Case

73

https://github.com/w3c/webrtc-nv-use-cases/issues/103

PR 125: Clarify Requirement N37

74

https://github.com/w3c/webrtc-nv-use-cases/pull/125

PR 118: Clarify Game Streaming requirements (Section 3.2.1)

● Rationale: Cloud Game Characteristics
● A highly interactive application that depends on continuous visual feedback to

user inputs.
● The cloud gaming latency KPI would track Click to Pixel latency - time elapsed

between user input to when the game response is available at the user display
(where as non-interactive applications may track G2G latency as the KPI).

● Requires low and consistent latency. Desirable C2P latency range is typically 30 -
150ms. A latency higher than 170 ms makes high precision games unplayable.

● Loss of video is highly undesirable. Garbled or corrupt video with fast recovery
may be preferable in comparison to a video freeze.

● Motion complexity can be high during active gameplay scenes.
● Consistent latency is critical for player adaptability. Varying latency requires

players to adapt continuously which can be frustrating and break gameplay.
● The combination of high complexity, ultra low latency and fast recovery will require

additional adaptive streaming and recovery techniques.

75

https://github.com/w3c/webrtc-nv-use-cases/pull/118

PR 118: Clarify Game Streaming requirements (Section 3.2.1)

76

ID Requirement Description Benefits to Cloud
Gaming

Cloud Gaming
Specific?

N48 Recovery
using
non-key
frames

WebRTC must support a mode allows
video decoding to continue even after a
frame loss without waiting for a key
frame. This enables addition of recovery
methods such as using frames containing
intra coded macroblocks and coding units
- WebRTC Issue: 15192

Players can continue
to game with partially
intelligible video.
Fast recovery from
losses on the network

Can be used by
any application
where video
corruption is
preferred to video
freezes

N49 Loss of
encoder
-decoder
synchronicity
notification

The WebRTC connection should
generate signals indicating to encoder
about loss of encoder-decoder
synchronicity (DPB buffers) and
sequence of the frame loss.(RFC 4585
section-6.3.3: Reference Picture
Selection Indication) - Delete of RPSI
(Mar/2017)

Fast recovery from
losses on network.
Helps application to
choose right recovery
method in lossy
network.

● Fast Recovery

https://github.com/w3c/webrtc-nv-use-cases/pull/118
https://bugs.chromium.org/p/webrtc/issues/detail?id=15192
https://chromiumdash.appspot.com/commit/25d0bdc1bcbd78adabe5dac4ff965434cd83a41f
https://chromiumdash.appspot.com/commit/25d0bdc1bcbd78adabe5dac4ff965434cd83a41f

PR 118: Clarify Game Streaming requirements (Section 3.2.1)

77

ID Requirement Description Benefits to Cloud Gaming Cloud Gaming
Specific?

N50 Configurable
RTCP
transmission
interval

The application must be able to
configure RTCP feedback
transmission interval (e.g.,
Transport-wide RTCP Feedback
Message).

Gaming is sensitive to
congestion and packet loss
resulting in higher latency.
Consistent RTCP feedback
helps application to adapt
video quality to varying
network (BWE and packet
loss).

In general, short
latency is very
important, but
consistent latency
is even more
important for the
cloud gaming.

N51 Improve
accuracy of
Jitter buffer
control

The user agent needs to provide
the jitter buffer to account for jitter
in the pipeline up to the frame
render stage - WebRTC Issue:
15535

Increases accuracy of
jitter buffer adaptation and
helps maintain consistent
latency

● Consistent Latency

https://github.com/w3c/webrtc-nv-use-cases/pull/118
https://bugs.chromium.org/p/webrtc/issues/detail?id=15535

N48 Recovery using non-key frames

78

● Regarding Non-Keyframe based Recovery
○ RTP de-packetization and framing would need to be updated to recover using

non-key frame.
■ Currently RTP receiver stops providing frames to decoder on packet loss.
■ Need a way to start providing subsequent completely received non-key frames

to decoder.
■ Requires decoder API support (only encoder API discussed at TPAC)

→ Is there enough consensus to add this requirement to WebRTC requirements list? Exactly how it is solved
(if solvable) can be discussed later, we are working with the use cases and requirements in this document.

The application must be able to control video decoding to continue even after a frame-loss
without waiting for a key frame. This enables fast recovery from lossy network conditions.

N49: Loss of encoder -decoder synchronicity notification

79

● IETF discussion relating to reference feedback in HEVC
○ Draft adopted in AVTCORE WG as draft-ietf-avtcore-hevc-webrtc

■ Github issues: https://github.com/aboba/hevc-webrtc/issues
■ In RFC 7798 Section 8.3, use of RPSI for positive acknowledgment is deprecated, used

only to indicate decoding of a reference by the client.
■ HEVC usage of RPSI different from VP8 (positive acknowledgement)
■ Will pursue LNTF RTCP message as a short-term solution
■ Will continue to pursue on the RPSI approach and find a way to meet the codec agnostic

concern raised by RPSI RTCP feedback support · Issue #13

→ Ongoing discussions are about "how" to implement this. Is there consensus about the requirement. We would like to
conclude the PR?

: The application must be able to generate signals that indicate to the encoder the loss of encoder-decoder
synchronicity (DPB buffers) and the sequence of frame loss using the platform-agnostic protocols. This helps the
application choose the right recovery method in a lossy network.

https://github.com/aboba/hevc-webrtc/issues/13

N50: Configurable RTCP transmission interval
● We found the implementation and need to confirm the Working Group feedback

○ RFC 4585: Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback
(RTP/AVPF) (rfc-editor.org)

■ The trr-int parameter indicates the interval between regular RTCP packets in milliseconds. The syntax
is as follows:

● a=rtcp-fb:pt trr-int interval
● where pt is the payload type and interval is the desired value in milliseconds. If the interval is

zero, it means that regular RTCP packets are not expected. The trr-int parameter can be
specified at the media level or at the payload type level.

● a=rtcp-fb:97 trr-int 100 // regular RTCP packets are expected every 100 milliseconds for payload type 97

○ Current syntax does not satisfy our requirements since it is generic for all RTCP messages.

→ Ongoing discussions are about "how" to implement this. Is there consensus about the requirement. We would like to
conclude the PR? Why can't we have a requirement on enabling quicker reacting (transport wide) congestion control
(presumably enabled by frequent RTCP reports)?

: The application must be able to configure RTCP feedback transmission interval (e.g., Transport-wide RTCP Feedback
Message). This helps the application adapt the video quality to the varying network and maintain consistent latency.

80

https://www.rfc-editor.org/rfc/rfc4585.html
https://www.rfc-editor.org/rfc/rfc4585.html
https://source.chromium.org/chromium/chromium/src/+/main:third_party/webrtc/call/video_send_stream.h;drc=f5bdc89c7395ed24f1b8d196a3bdd6232d5bf771;bpv=1;bpt=1;l=171?gsn=rtcp_report_interval_ms&gs=KYTHE%3A%2F%2Fkythe%3A%2F%2Fchromium.googlesource.com%2Fcodesearch%2Fchromium%2Fsrc%2F%2Fmain%3Flang%3Dc%252B%252B%3Fpath%3Dthird_party%2Fwebrtc%2Fcall%2Fvideo_send_stream.h%236c8rYH8mThDTcL-luRCLuvS4NDsnHLyzN9zpVQFbdGU

N51:Improve accuracy of Jitter buffer control
● As the Cloud gaming service supports higher resolution(4K) and higher frame rate(120p), we found that webrtc

has many assumptions on the it’s implementation assuming default video frame rates 60fps and render delay as
10ms etc.

○ third_party/webrtc/modules/video_coding/timing/timing.h : kDelayMaxChangeMsPerS = 100;

○ 1327251 - Use render time and RTP timestamps in low-latency video path - chromium

■ This bug tracks the work with making the signalling to the compositor explicit and always setting a reference time as well as removing some

60fps assumptions by instead using the actual RTP timestamps to determine the frame rate.

● So it make hard to control the latency through the Jitter buffer, so want to propose the implementation for getting
the correct value on the rendering on the device.

■ 15535:Jitter buffer to account for jitter in the pipeline up to the frame render stage

→ Is there enough consensus to add this requirement to WebRTC requirements list?

The user agent needs to provide the jitter buffer to account for jitter in the pipeline up to the frame
render stage. This helps the application adapt the video quality to the varying network and maintain
consistent latency.

81

https://blog.google/products/chromebooks/geforce-now-baldurs-gate-iii/
https://source.chromium.org/chromium/chromium/src/+/main:third_party/webrtc/modules/video_coding/timing/timing.h;drc=f3ee53147a677fb8d5fac5a83e68a41041c66758;bpv=1;bpt=1;l=57?gsn=kDelayMaxChangeMsPerS&gs=KYTHE%3A%2F%2Fkythe%3A%2F%2Fchromium.googlesource.com%2Fcodesearch%2Fchromium%2Fsrc%2F%2Fmain%3Flang%3Dc%252B%252B%3Fpath%3Dthird_party%2Fwebrtc%2Fmodules%2Fvideo_coding%2Ftiming%2Ftiming.h%23EV3bwWCHhXp_lb2qafN6lgChtNYosSNEFDKBYIIEcGM
https://bugs.chromium.org/p/chromium/issues/detail?id=1327251
https://bugs.chromium.org/p/webrtc/issues/detail?id=15535

Discussion (End Time: 09:55)
●

82

Wrapup and Next Steps
Start Time: 09:55 AM
End Time: 10:00 AM

83

Title Goes Here
● Content goes here

84

Thank you

Special thanks to:

WG Participants, Editors & Chairs

85

PR 123: Use Cases Removed
● Church services, Webinars and Town Hall meetings removed

○ These use cases typically do not require ultra low latency
■ Broadcast often handled by conventional streaming technology (e.g. LL-HLS)
■ Fanout can be addressed using RTCDataChannel (e.g.Peer5).
■ RTCDataChannel requirements (e.g. worker support) covered in Section 3.1: File

Sharing.
● Sporting events also removed.

○ While this requires low latency and feedback, it also needs content protection.
■ CMAF streaming can be addressed by MoQ or other ULL streaming protocol.
■ Fanout can be addressed using unreliable/unordered RTCDataChannel with custom FEC.
■ RTCDataChannel requirements (e.g. worker support) covered in Section 3.1: File Sharing.
■ Participant feedback (cheers) handled via WebRTC?
■ Content protection requires CMAF, absent DRM support for encodedChunks:

● Issue 41: Support for content protection
● https://rawgit.com/wolenetz/media-source/mse-for-webcodecs-draft/media-so

urce-respec.html#webcodecs-based

86

https://github.com/w3c/webrtc-nv-use-cases/pull/124
https://github.com/w3c/webcodecs/issues/41
https://rawgit.com/wolenetz/media-source/mse-for-webcodecs-draft/media-source-respec.html#webcodecs-based
https://rawgit.com/wolenetz/media-source/mse-for-webcodecs-draft/media-source-respec.html#webcodecs-based

