
W3C WebRTC
WG Meeting

March 21, 2023
8 AM - 10 AM Pacific Time

Chairs: Bernard Aboba
Harald Alvestrand
Jan-Ivar Bruaroey 1

W3C WG IPR Policy
● This group abides by the W3C Patent Policy

https://www.w3.org/Consortium/Patent-Policy/
● Only people and companies listed at

https://www.w3.org/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

2

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!
● Welcome to the March 2023 interim meeting

of the W3C WebRTC WG, at which we will
cover:
○ WebRTC-Stats, WebRTC-PC, Mediacapture-extensions,

Encoded Transform, ICE Controller API
● Future meetings:

○ April 18
○ May 16
○ June 27
○ July 18

3

https://www.w3.org/2011/04/webrtc/wiki/Main_Page#Meetings
https://www.w3.org/2011/04/webrtc/wiki/April_18_2023
https://www.w3.org/2011/04/webrtc/wiki/May_16_2023
https://www.w3.org/2011/04/webrtc/wiki/June_27_2023
https://www.w3.org/2011/04/webrtc/wiki/July_18_2023#WebRTC_WG_Virtual_Interim

About this Virtual Meeting
● Meeting info:

○ https://www.w3.org/2011/04/webrtc/wiki/March_21_2023
● Link to latest drafts:

○ https://w3c.github.io/mediacapture-main/
○ https://w3c.github.io/mediacapture-extensions/
○ https://w3c.github.io/mediacapture-image/
○ https://w3c.github.io/mediacapture-output/
○ https://w3c.github.io/mediacapture-screen-share/
○ https://w3c.github.io/mediacapture-record/
○ https://w3c.github.io/webrtc-pc/
○ https://w3c.github.io/webrtc-extensions/
○ https://w3c.github.io/webrtc-stats/
○ https://w3c.github.io/mst-content-hint/
○ https://w3c.github.io/webrtc-priority/
○ https://w3c.github.io/webrtc-nv-use-cases/
○ https://github.com/w3c/webrtc-encoded-transform
○ https://github.com/w3c/mediacapture-transform
○ https://github.com/w3c/webrtc-svc
○ https://github.com/w3c/webrtc-ice

● Link to Slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● The meeting is (still) being recorded. The recording will be public.
● Volunteers for note taking? 4

https://www.w3.org/2011/04/webrtc/wiki/January_17__2023
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-extensions/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions/
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/mst-content-hint/
https://w3c.github.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://github.com/w3c/webrtc-encoded-transform
https://github.com/w3c/mediacapture-transform
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://www.w3.org/2011/04/webrtc/wiki/March_21__2023
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

W3C Code of Conduct
● This meeting operates under W3C Code of Ethics and

Professional Conduct

● We're all passionate about improving WebRTC and the
Web, but let's all keep the conversations cordial and
professional

5

https://www.w3.org/Consortium/cepc/
https://www.w3.org/Consortium/cepc/

Virtual Interim Meeting Tips
This session is (still) being recorded

● Click to get into the speaker queue.
● Click to get out of the speaker queue.
● Please wait for microphone access to be granted before

speaking.
● If you jump the speaker queue, you will be muted.
● Please use headphones when speaking to avoid echo.
● Please state your full name before speaking.
● Poll mechanism may be used to gauge the “sense of the

room”.

6

Understanding Document Status
● Hosting within the W3C repo does not imply adoption by the

WG.
○ WG adoption requires a Call for Adoption (CfA) on the

mailing list.
● Editor’s drafts do not represent WG consensus.

○ WG drafts do imply consensus, once they’re confirmed by
a Call for Consensus (CfC) on the mailing list.

○ Possible to merge PRs that may lack consensus, if a note
is attached indicating controversy.

7

Issues for Discussion Today

● 08:10 - 08:50 AM WebRTC-Extensions, WebRTC-Stats, & WebRTC-PC
● 08:50 - 09:10 AM Encoded Transform - SDP (Harald)
● 09:10 - 09:50 AM Ice Controller API (Sameer Vijakar & Peter Thatcher)
● 09:50 - 10:00 AM Wrapup and Next Steps (Chairs)

Time control:
● A warning will be given 2 minutes before time is up.
● Once time has elapsed we will move on to the next item.

8

WebRTC-Extensions, WebRTC-Stats,
WebRTC-PC
Start Time: 08:10 AM
End Time: 08:50 AM

9

For Discussion Today
● WebRTC-Extensions

○ PR 147: Add RTCRtpEncodingParameters.codec to change the active codec
(Henrik & Florent)

● WebRTC-Stats
○ Issue 742: Assorted comments on RTCAudioPlayoutStats (Paul or

Jan-Ivar)
○ Issue 730: The HW exposure check does not solve Cloud Gaming

use cases (Henrik, Sun continued from last month discussion)
● WebRTC-PC

○ Issue 2820/PR 2829: setParameters/insertDtmf/replaceTrack should reject on
[[Stopping]] as well as [[Stopped]]? (Jan-Ivar)

○ Issue 2827/PR 2828: Hard to tell if there are state gaps in connectionState algorithm
(Jan-Ivar)

○ Issue 2835: Section 4.4.2: createOffer() and setLocalDescription() resource
handling (Bernard)

10

https://github.com/w3c/webrtc-extensions/pull/147
https://github.com/w3c/webrtc-stats/issues/742
https://github.com/w3c/webrtc-stats/issues/730
https://github.com/w3c/webrtc-pc/issues/2820
https://github.com/w3c/webrtc-pc/pull/2829
https://github.com/w3c/webrtc-pc/issues/2827
https://github.com/w3c/webrtc-pc/pull/2828
https://github.com/w3c/webrtc-pc/issues/2835

As previously decided and recently discussed (January Interim),
we want to be able to change codec with RTCRtpSender.setParameters() in order to…

● Allow different codecs on different encodings.
● Make it possible to change codec without re-negotiating.
● Allow specifying both codec and scalabilityMode with a single API call.

This is an FYI - Florent has now submitted PR 147 as promised:

 partial dictionary RTCRtpEncodingParameters {
 // Parent dictionary to both RTCRtpCodecParameters and
 // RTCRtpCodecCapabilities as of PR 2834.
 RTCRtpCodec codec;
 }

PR 147: Add RTCRtpEncodingParameters.codec to change the active
codec (Henrik & Florent)

11

https://lists.w3.org/Archives/Public/public-webrtc/2020Jul/0027.html
https://docs.google.com/presentation/d/1YPLARybHV_1i7Bw6OGCu6r_3F65Eg4Ptvo9kVRxS8Us/edit#slide=id.g1d9e3c98ac4_40_9
https://github.com/w3c/webrtc-extensions/pull/147
https://github.com/w3c/webrtc-pc/pull/2834
https://github.com/w3c/webrtc-extensions/pull/147

Example:
 // Prior to negotiation
 pc.addTransceiver('video', sendEncodings: [
 {codec: findCodec(RTCRtpSender.getCapabilities('video').codecs, 'VP8')},
 {codec: findCodec(RTCRtpSender.getCapabilities('video').codecs, 'VP9')},
]);

 // After negotiation
 const parameters = sender.getParameters();
 parameters.encodings[0].codec = findCodec(parameters.codecs, 'H264');
 parameters.encodings[1].codec = findCodec(parameters.codecs, 'AV1');
 await sender.setParameters(parameters);

codec is a preference.
● If not specified, getParameters().encodings[i].codec is missing (backwards compat).
● If specified, we use codec rather than the first codec listed in the SDP.

PR 147: Add RTCRtpEncodingParameters.codec to change the active
codec (Henrik & Florent)

12

https://github.com/w3c/webrtc-extensions/pull/147

PR 682 recently added "media-playout" stats that are “Only applicable if the playout
path represents an audio device.” — but this appears to be a layer violation, gathering
metrics downstream of an RTCRtpReceiver.track.

playoutId is frequently unimplementable, as there can be more than one playout path,
or none, because a MediaStreamTrack can be sent to multiple AudioContexts and/or
HTMLMediaElements for rendering.

An AudioContext can also be connected to another AudioContext, that are on different
devices. The actual output can be on the first, second or both. This is another case
where playoutId cannot be implemented.

All the other metrics are reimplementations of Web Audio API's Audio Render Capacity
and latency metrics.

Only application authors know the shape of their audio output path, and therefore they
only can determine a quality metric, based on number provided by the object they
actually use to render audio.

Issue 742: Assorted comments on RTCAudioPlayoutStats
(Paul or Jan-Ivar) (1/2)

13

https://github.com/w3c/webrtc-stats/pull/682
https://w3c.github.io/webrtc-stats/#playoutstats-dict*
https://w3c.github.io/webrtc-stats/#dom-rtcinboundrtpstreamstats-playoutid
https://webaudio.github.io/web-audio-api/#audiorendercapacity
https://github.com/w3c/webrtc-stats/issues/742

Things can look like playout paths that are not, e.g., an RTCRtpReceiver.track piped to
an AudioContext with an AnalyzerNode or an AudioWorkletNode to compute some
metrics or record the output (e.g. using a Web Worker and Web Codecs).

Only application authors know the shape of their audio output path, and only they can
determine a quality metric, based on numbers provided by the object they actually use
to render audio. Seems out of scope for WebRTC.

Proposal: Revert PR 682.

Issue 742: Assorted comments on RTCAudioPlayoutStats
(Paul or Jan-Ivar) (2/2)

14

https://github.com/w3c/webrtc-stats/pull/682
https://github.com/w3c/webrtc-stats/issues/742

powerEfficient[Encoder/Decoder] exposes HW capabilities and usage.

● To address privacy concerns, a HW exposure check was added:
“Only expose if context capturing state is true” (= getUserMedia)

Problem:
● Does not work in the Cloud Gaming use case which does not capture.
● Specs are inconsistent!

○ Media Capabilities already exposes powerEfficient.
○ The MC privacy considerations section is vague.

Issue 730: Recap: The HW exposure check does not solve Cloud
Gaming use cases (Henrik, Sun)

15

https://w3c.github.io/webrtc-stats/#limiting-exposure-of-hardware-capabilities
https://www.w3.org/TR/media-capabilities/#dom-mediacapabilitiesinfo-powerefficient
https://www.w3.org/TR/media-capabilities/#decoding-encoding-fingerprinting
https://github.com/w3c/webrtc-stats/issues/730

Proposal :
● There were two options. We decided to move forward with option 2 last month.

○ Option 2 (PR 732): Delegate the “am I allowed to expose HW information?”
question to Media Capabilities (Discussed last month and continued on the
issue)

○ We could not reach consensus because it could expose hardware capabilities.
● So we would like to go back to the option 1 (PR 725): defining a new metric for

software decoder fallback events
○ Using the option #1, we could protect against fingerprinting by limiting the flag

to when the decoder falls back when it started from a hardware decoder.

Issue 730: The HW exposure check does not solve Cloud
Gaming use cases (Henrik, Sun)

16

https://github.com/w3c/webrtc-stats/pull/732
https://github.com/w3c/webrtc-stats/pull/725
https://github.com/w3c/webrtc-stats/issues/730

Proposal - option 1(PR 725)
● boolean decoderFallback in RTCInboundRtpStreamStats. Advantages:

○ Decoder fallback can’t be used to identify the User Agent since it only arises from system
abnormalities and can be revoked when the system recovers. So it has a fingerprinting advantage
compared power efficient.

■ In case of Software decoder(no HW Decoder): stays false
■ In case of HW Decoder: starts with false and become true on fallback to the software decoder. Changes to

false again when the decoder recovers to HW.
■ In the Chromium browser implementation, fallback occurs for the following reasons:

Issue 730: The HW exposure check does not solve Cloud
Gaming use cases (Henrik, Sun)

17

enum class RTCVideoDecoderFallbackReason {
 kSpatialLayers = 0,
 kConsecutivePendingBufferOverflow = 1,
 kReinitializationFailed = 2,
 kPreviousErrorOnDecode = 3,
 kPreviousErrorOnRegisterCallback = 4,
 kConsecutivePendingBufferOverflowDuringInit = 5,
 kMaxValue = kConsecutivePendingBufferOverflowDuringInit,
};

https://github.com/w3c/webrtc-stats/pull/725
https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/platform/peerconnection/rtc_video_decoder_fallback_recorder.h;l=15;bpv=1;bpt=1
https://github.com/w3c/webrtc-stats/issues/730

Align spec with Chrome, Edge & WPT, which predate introduction of [[Stopping]],
preserving the following behavior:

tc1.stop();
await tc1.sender.setParameters(...); // InvalidStateError

tc2.stop();
await tc2.sender.track.replaceTrack(...); // InvalidStateError

tc3.stop();
await tc3.sender.dtmf.insertDtmf(...); // InvalidStateError

Matches precedent:

tc4.stop();
tc4.direction = "sendrecv"; // InvalidStateError

Issue 2820/PR 2829: setParameters/insertDtmf/replaceTrack
should reject on [[Stopping]] as well as [[Stopped]]?

18

https://github.com/web-platform-tests/wpt/blob/c29a0343e99749d4607cb7e6ac64a8de1538288e/webrtc/RTCRtpTransceiver.https.html#L1232
https://github.com/w3c/webrtc-pc/issues/2820
https://github.com/w3c/webrtc-pc/pull/2829

Editorial FYI:

Help show that

connectionState =
iceConnectionState +
DTLS state

…and that there are no gaps (see issue for proof — thanks @pthatcher!)

Issue 2827/PR 2828: Hard to tell if there are state gaps in
connectionState algorithm

19

https://github.com/w3c/webrtc-pc/issues/2827
https://github.com/w3c/webrtc-pc/pull/2828

● Section 4.4.2 says:

"If a system has limited resources (e.g. a finite number of decoders), createOffer
needs to return an offer that reflects the current state of the system, so that
setLocalDescription will succeed when it attempts to acquire those resources. The
session descriptions MUST remain usable by setLocalDescription without causing
an error until at least the end of the fulfillment callback of the returned promise."

● Do existing implementations provide this guarantee?
○ Youenn: “My understanding is that implementations guarantee that setlocalDescription

will succeed because UA will not really acquire these resources at this time.”
● Do we need to change the text?

Issue 2835: Section 4.4.2: createOffer() and
setLocalDescription() resource handling (Bernard)

20

https://github.com/w3c/webrtc-pc/issues/2835

Discussion (End Time: 08:50)
●

21

Encoded Tranform (Harald)
Start Time: 08:50 AM
End Time: 09:10 AM

22

Negotiating Custom
Codecs

Transforming content and being truthful
about it

Issue #172

https://github.com/w3c/webrtc-encoded-transform/issues/172

The Problem with Encoded Transform
● An app sets up a connection, negotiating a set of codecs
● The app sender inserts a transform, changing the format on

the wire
● The app receiver reverses the transform
● Problem: Elements on the way (SFUs, packetizers) expect

the negotiated format, not the transformed format
● This complicates things. Complexity is bad.

Solution: Negotiate what you send.

The Encoded Transform model

Encoder Transform Packetizer

SDP negotiation
moduleBrowser

capabilities
Offer/Answer

Packets

The Enhanced Encoded Transform model

Encoder Transform Packetizer

SDP negotiation
moduleBrowser

capabilities
Offer/Answer

Packets

Application

Operations in the Enhanced Encoded Transform
● The application tells the SDP module about new formats
● The application tells the encoder what format to encode to
● The other modules of the system operate as before
In particular:
● The SDP module negotiates over the set of known formats,

with the normal controls over what format to select
● The encoder encodes to a supported format
● The packetizer is configured by the SDP module as before
(The receiving side functions similarly)

New APIs needed to achieve this functionality
New information needed about codecs - this allows SDP to configure the packetizer

partial dictionary RTCRtpCodecCapability {

 DOMString packetizationMode;

}

Pre-negotiation calls - these allow SDP to negotiate support of “custom” codecs

PeerConnection.AddSendCodecCapability(DOMString kind, CodecCapability capability)

PeerConnection.AddReceiverCodecCapability(DOMString kind, CodecCapability capability)

After creating senders and receivers - these allow the app to select
the encoder and PT->decoder mapping
RTCRtpSender.SetEncodingCodec(RTCCodecParameters parameters) // Alternatively, extensions PR #147

RTCRtpReceiver.AddDecodingCodec(CodecParameters parameters)

https://github.com/w3c/webrtc-extensions/pull/147

Example Code - Sender
customCodec = {

 mimeType: “video/acme-encrypted”,

 clockRate: 90000,

 sdpFmtpLine = “encapsulated-codec=vp8”,

 packetizationMode = “video/vp8”,

};

pc.addSenderCodecCapability(‘video’, customCodec);
sender = pc.AddTrack(videotrack);
// Negotiate as usual
for (codec in sender.getParameters().codecs) {
 if (codec.mimeType == “video/acme-encrypted”) {
 encryptedPT = codec.payloadType;
 }
}
if (!encryptedPT) { /* failure; don’t encrypt */ return; }
(readable, writable) = sender.getEncodedStreams();

readable.pipeThrough(new TransformStream(
 transform: (frame) => {

metadata = frame.metadata();
 if (metadata.payloadType == expectedPT) {
 encryptBody(frame);
 metadata = frame.metadata();
 metadata.pt = encryptedPT;
 frame.setMetadata(metadata);
 writable.write(frame);
 } // “Else” branch depends on application
 }
}).pipeTo(writable);

Example Code - Receiver
pc.AddReceiverCodecCapability(customCodec);
// Negotiation goes here
pc.ontrack = (receiver) => {

 for (codec in receiver.getParameters().codecs) {
 if (codec.mimeType == “video/acme-encrypted”) {
 encryptedPT = codec.payloadType;
 }
 }
 if (!encryptedPT) { /* Failure, don’t decrypt */ return; }
 receiver.addDecodingCodec({mimeType: video/vp8, payloadType=208});
 (readable, writable) = receiver.getEncodedStreams();
 readable.pipeThrough(new TransformStream(
 transform: (frame) => {
 metadata = frame.metadata();
 if (metadata.payloadType == encryptedPT) {
 decryptBody(frame);
 metadata.payloadType = 208;
 } // “Else” branch will depend on application
 writable.write(frame);
 }
 }).pipeTo(writable);
};

Next Steps
● This is not ready for adoption
● We need feedback, experimentation and thinking about

whether this
○ implementable
○ useful

● We intend to host a spec branch on a public Git
repository and take comments there

● In a month or two, it should be baked enough to
propose to the WG for adoption in the form of merging a
PR against the encoded-transform spec

Discussion (End Time: 09:10)
●

32

Ice Controller API
(Sameer Vijakar & Peter Thatcher)
Start Time: 09:10 AM
End Time: 09:50 AM

33

Allow applications to have greater visibility and control over the
choice of connection used for transport.

Draft: https://sam-vi.github.io/webrtc-icecontroller

GitHub: https://github.com/sam-vi/webrtc-icecontroller

ICE Controller API

34

https://sam-vi.github.io/webrtc-icecontroller/
https://github.com/sam-vi/webrtc-icecontroller

WebRTC NV Use Cases - Control

35

● N01 - The user agent can control candidate gathering and
pruning, limiting the networks on which candidates are
gathered, the types of candidates, etc.

● N04 - The ICE agent must be able to maintain multiple
candidate pairs and move traffic between them.

● N05 - The ICE agent must be able to take the network cost into
account when considering re-routing.

● N14 - The application must be able to minimize ICE connectivity
checks.

WebRTC NV Use Cases - Reliability
● N15 - The application must be able to take steps to ensure a low

and consistent latency for audio, video and data under varying
network conditions.

● N30 - The user agent must provide the ability to re-establish
media after an interruption.

36

WebRTC NV Use Cases - Forking
● N02 - The user agent must be capable of establishing multiple

connections to peers without generating a separate
configuration ("offer") for each connection prior to establishment.

37

API scope

38

Trigger candidate gathering with constraints N01, N05

Fire events when candidates are added and removed All

Status and RTT measurements of candidate pairs N15

Send STUN pings, fire events when ping response is
received or times out N04, N14, N15, N30

Switch active candidate pair for sending and receiving N04, N15, N30

Prevent or trigger pruning of candidate pairs N04, N15, N30

● Applications should have the necessary level of visibility and
control over ICE

● User privacy and security must not suffer

● Applications should not need to implement a full ICE agent, just
interject when necessary

API design principles

39

● Browser performs ICE unless application says otherwise

● Established pattern for application to prevent default behaviour

○ Cancelable events
■ Form submission

■ UI events (pointer click, key press, wheel scroll)

○ Calling preventDefault() from a listener cancels the event

● Lower bar to use the API, only implement what you need

● Extensible and still allows full ICE takeover

Incremental API - ICE Controller

40

A review on how ICE works….

And the difference between web and native

41

ICE steps

1. Gather local candidates
2. Signal candidates
3. Pair local and remote candidates
4. Send and receive checks and resposnes
5. Select a candidate pair
6. Send and receive “media”

42

Basic/Classic ICE

● Do these steps once
● One after another
● With one remote endpoint
● If the connection fails, completely start over

43

WebRTC ICE

● Do some steps more than once
○ Send checks forever for renewing consent
○ Add ICE servers

● Do some steps in parallel or ahead of time
○ Local candidate pooling
○ Trickle ICE

44

libwebrtc ICE

● Speed things up even more
○ Prioritize relayed candidates for checks, but not selection
○ Connect to many TURN servers, but then “prune” to one

● Do lots of steps more than once
○ Gather local candidates as network interfaces come up
○ Send checks very frequently to verify connectivity
○ Re-select and re-nominate candidate pairs regularly

● Be smarter about connection failures
○ Detect “failure” aggressively by watching incoming media
○ Regather candidates for “failed networks” regularly

○ Keep a backup candidate pair to fail over to
45

Even more advanced ICE

● Connect to many remote endpoints
○ ICE forking

● Use with QUIC
● Do optimizations that we haven’t thought of yet

(or someone is doing in a native app)

46

Web apps vs. native apps

● All of this is available to native apps
● Some of this is available on some web browsers

(but not very controllable)
● There is a gap
● Developers have been asking about it for years
● We already have WebRTC NV use cases for many
● Can we close the gap?

47

How can we close the gap?

48

Fully
Manual

Fully
Automatic

WebRTC
ICE

WebICE
Option A

WebICE
Option B

FlexICEIce
Controller

WebICE Option A: Almost fully manual

49

● Some things automatic
○ Sending check responses
○ Gathering local candidates as network interfaces added

● Some things manual
○ When to start (re)gathering local candidates and
○ Adding and removing candidate pairs
○ Sending checks
○ Selecting a candidate pair

● Supports everything mentioned
○ ICE forking
○ Future optimizations (or novel native optimizations)

WebICE Steps

50

1. Gather local candidates with IceGatherer
2. Signal candidates with IceLocalCandidate and

IceRemoteCandidate
3. Pair candidates with IceTransport.addCandidatePair
4. Send checks with IceCandidatePair.sendCheck
5. Select a candidate pair with

IceTransport.selectedCandidatePair
6. Send and receive “media” with an IceTransport

WebICE Option A example (part 1)

51

let iceGatherer = new IceGatherer();

let iceTransport = new IceTransport();

let remoteCandidates = [];

iceGatherer.onlocalcandidategathered = (localCandidate) => {

 signaling.sendLocalIceCandidate(localCandidate); // Step 2

 for (remoteCandidate in remoteCandidates) {

 iceTransport.addCandidatePair(localCandidate, remoteCandidate); // Step 3

 }

};

signaling.onremoteicecandidatereceived = (remoteCandidate) => { // Step 2

 remoteCandidates.push(remoteCandidate);

 for (localCandidate in iceGatherer.localCandidates) {

 iceTransport.addCandidatePair(localCandidate, remoteCandidate); // Step 3

 }

};

iceGatherer.gather({iceServers: …}); // Step 1

WebICE Option A example (part 2)

52

let peerConnection = new PeerConnection({iceTransport: iceTransport}); // Step 6

sendChecks(); // Steps 4 and 5

function sendChecks() {

 let candidatePair = chooseNextCandidatePairToCheck(iceTransport.candidatePairs);

 if (candidatePair) {

 (async() => {

 let response = await candidatePair.sendCheck({priority: …, nominate: …}).getResponse(1.0);

 if (response && response.success &&

 betterThanSelectedCandidatePair(candidatePair, iceTransport.selectedCandidatePair) {

 iceTransport.selectedCandidatePair = candidatePair;

 }

 })();

 }

 setTimeout(sendChecks, 100);

}

WebICE Option B: optimally automatic

53

● A superset of Option A
● Can do everything Option A can
● Can optionally keep automatic behavior

WebICE Option B example

54

let iceGatherer = new IceGatherer();

let iceTransport = new IceTransport({

 automaticallyPairCandidates: iceGatherer,

 automaticallySendChecks: “controlling”,

 automaticallySelectCandidatePair: true,

});

iceGatherer.onlocalcandidategathered = (localCandidate) => {

 signaling.sendLocalIceCandidate(localCandidate); // Step 2

};

signaling.onremoteicecandidatereceived = (remoteCandidate) => { // Step 2

 iceTransport.addRemoteCandidate(remoteCandidate); // Step 3, step 4, and step 5 are automatic

};

iceGatherer.gather({iceServers: …}); // Step 1

let peerConnection = new PeerConnection({iceTransport: iceTransport}); // Step 6

WebICE Example (N01; control gathering)

55

let iceGatherer = new IceGatherer();

iceGatherer.gather({

 // Control types of candidates

 excludeHost: true,

 excludeServerReflexive: true,

 excludeIpv6: true,

 // To exclude TURN, give no TURN servers

 iceServers: …,

 // Only useful for re-gathering after learning about network IDs.

 // No way to enumerate networks separately.

 excludeNetworkIds: …,

});

// “prune” a local candidate

iceGatherer.removeLocalCandidate(iceGatherer.localCandidates[0]);

// 5 minutes later

iceGatherer.gather(...);

WebICE Example (N02; ICE forking)

56

let iceGatherer = new IceGatherer();

let endpointById = {};

iceGatherer.onlocalcandidategathered = (localCandidate) => {

 signaling.sendLocalIceCandidate(localCandidate); // Broadcast to many

};

signaling.onremoteendpoint = (endpointId) => {

 let iceTransport = new IceTransport({ automaticallyPairCandidates: iceGatherer, …});

 endpointById[endpointId] = {

 iceTransport: iceTransport,

 peerConnection: new PeerConnection({iceTransport: iceTransport}),

 };

};

signaling.onremoteicecandidate = (endpointId, remoteCandidate) => {

 iceTransportByEndpointId[endpointId].iceTransport.addRemoteCandidate(remoteCandidate);

};

iceGatherer.gather({iceServers: …});

WebICE Example (N04; select pair)

57

let iceTransport = …;

iceTransport.selectedCandidatePair = iceTransport.candidatePairs[0];

iceTransport.selectedCandidatePair = iceTransport.candidatePairs[1];

// Only for option B with automaticallyPairCandidates=true

// Ensures the candidate pair will not be removed and will and that checks

// will be sent with the given interval.

iceTransport.candidatePairs[0].sendCheckInterval = 25.0;

WebICE Example (N05; network cost)

58

let iceTransport = …;

if (iceTransport.candidatePairs[0].networkCost > iceTransport.candidatePairs[1].networkCost) {

 iceTransport.selectedCandidatePair = iceTransport.candidatePairs[1];

} else {

 iceTransport.selectedCandidatePair = iceTransport.candidatePairs[0];

}

WebICE Example (N14; infrequent checks)

59

let iceTransport = …;

for (let candidatePair of iceTransport.candidatePairs) {

 // Only for Option B.

 // Option A: just decide when to call candidatePair.sendCheck().

 candidatePair.sendCheckInterval = 25.0;

}

WebICE Example (N15; measure RTT)

60

// Option A

let iceCandidatePair = …;

let check = await iceCandidatePaircandidatePair.sendCheck();

let response = await check.getResponse(1.0);

let rtt = response.receivedTime - check.sentTime;

// Option B

iceCandidatePair.onchecksent = (check) => {

 let response = await check.getResponse(1.0);

 let rtt = response.receivedTime - check.sentTime;

}

WebICE WebIDL (IceGatherer)

61

interface IceGatherer {

 Promise<void> gather(IceGatherParameters);

 readonly sequence<IceLocalCandidate> localCandidates;

 attribute eventhandler onlocalcandidateadded;

 … more …
}

dictionary IceGatherParameters {

 sequence<RTCIceServer> servers;

 … more …
}

WebICE WebIDL (IceTransport)

62

interface IceTransport {

 readonly attribute sequence<IceCandidatePair> candidatePairs;

 attribute IceCandidatePair? selectedCandidatePair;

 Promise<IceCandidatePair?> addCandidatePair(IceLocalCandidate, IceRemoteCandidate);

 void removeCandidatePair(IceCandidatePair);

 // Option B only

 void addRemoteCandidate(IceRemoteCandidate);

 … more …
}

WebICE WebIDL (IceCandidatePair)

63

interface IceCandidatePair {

 readonly attribute LocalIceCandidate localCandidate;

 readonly attribute RemoteIceCandidate remoteCandidate;

 Promise<IceCheckSent> sendCheck(IceCheckParameters);

 // Option B only

 attribute double sendCheckInterval;

 attribute eventhandler onicechecksent;

 … more …

}

dictionary IceCheckParameters {

 unsigned long? priority;

 bool useCandidate = false;

 unsigned long? nomination; // draft-thatcher-ice-renomination

 … more …

}

WebICE WebIDL (IceCheckSent)

64

interface IceCandidatePair {

 readonly attribute DOMHighResTimeStamp sentTime;

 readonly attribute Promise<IceCheckResponse?> getResponse(double timeout);

}

dictionary IceCheckParameters {

 readonly attribute success;

 readonly attribute unsigned short errorCode?;

 readonly attribute DOMHighResTimeStamp receivedTime;

 // … more …
}

WebICE WebIDL (IceLocalCandidate)

65

// Similar to RTCIceCandidate, but can have events and methods

interface IceLocalCandidate {

 readonly attribute DOMString address;

 readonly attribute unsigned short port;

 readonly attribute RTCIceProtocol protocol;

 readonly attribute RTCIceCandidateType type;

 readonly attribute RTCIceTcpCandidateType? tcpType;

 readonly attribute DOMString? relatedAddress;

 readonly attribute unsigned short? relatedPort;

 readonly attribute RTCIceServerTransportProtocol? relayProtocol;

 readonly attribute DOMString? Url;

 … more …

}

WebICE WebIDL (IceRemoteCandidate)

66

// More can be signaled, but this is all that’s needed by ICE

dictionary IceRemoteCandidate {

 DOMString usernameFragment;

 DOMString password;

 DOMString address;

 unsigned short port;

 RTCIceProtocol protocol;

 RTCIceTcpCandidateType? tcpType;

}

Discussion (End Time: 09:50)
●

67

Wrapup and Next Steps
Start Time: 09:50 AM
End Time: 10:00 AM

68

Name these Birds

69

Thank you

Special thanks to:

WG Participants, Editors & Chairs

70

