
W3C WebRTC
WG Meeting

June 27, 2023
8 AM - 10 AM

Chairs: Bernard Aboba
Harald Alvestrand
Jan-Ivar Bruaroey 1

W3C WG IPR Policy
● This group abides by the W3C Patent Policy

https://www.w3.org/Consortium/Patent-Policy/
● Only people and companies listed at

https://www.w3.org/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

2

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!
● Welcome to the June 2023 interim meeting

of the W3C WebRTC WG, at which we will
cover:
○ Use Cases, IceController

● Future meetings:
○ July 18
○ September 12 (TPAC)
○ September 14 (SCCG Joint Meeting)
○ September 21 (MEDIA WG Joint Meeting)
○ October 17
○ November 21
○ December 12

3

https://www.w3.org/2011/04/webrtc/wiki/Main_Page#Meetings
https://www.w3.org/2011/04/webrtc/wiki/July_18_2023
https://www.w3.org/2011/04/webrtc/wiki/September_12_2023
https://www.w3.org/2011/04/webrtc/wiki/September_14_2023
https://www.w3.org/2011/04/webrtc/wiki/September_21_2023
https://www.w3.org/2011/04/webrtc/wiki/October_17_2023
https://www.w3.org/2011/04/webrtc/wiki/November_21_2023
https://www.w3.org/2011/04/webrtc/wiki/December_12_2023

About this Virtual Meeting
● Meeting info:

○ https://www.w3.org/2011/04/webrtc/wiki/June_27_2023
● Link to latest drafts:

○ https://w3c.github.io/mediacapture-main/
○ https://w3c.github.io/mediacapture-extensions/
○ https://w3c.github.io/mediacapture-image/
○ https://w3c.github.io/mediacapture-output/
○ https://w3c.github.io/mediacapture-screen-share/
○ https://w3c.github.io/mediacapture-record/
○ https://w3c.github.io/webrtc-pc/
○ https://w3c.github.io/webrtc-extensions/
○ https://w3c.github.io/webrtc-stats/
○ https://w3c.github.io/mst-content-hint/
○ https://w3c.github.io/webrtc-priority/
○ https://w3c.github.io/webrtc-nv-use-cases/
○ https://github.com/w3c/webrtc-encoded-transform
○ https://github.com/w3c/mediacapture-transform
○ https://github.com/w3c/webrtc-svc
○ https://github.com/w3c/webrtc-ice

● Link to Slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● The meeting is (still) being recorded. The recording will be public.
● Volunteers for note taking? 4

https://www.w3.org/2011/04/webrtc/wiki/June_27__2023
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-extensions/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions/
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/mst-content-hint/
https://w3c.github.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://github.com/w3c/webrtc-encoded-transform
https://github.com/w3c/mediacapture-transform
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://www.w3.org/2011/04/webrtc/wiki/June_27_2023
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

W3C Code of Conduct
● This meeting operates under W3C Code of Ethics and

Professional Conduct

● We're all passionate about improving WebRTC and the
Web, but let's all keep the conversations cordial and
professional

5

https://www.w3.org/Consortium/cepc/
https://www.w3.org/Consortium/cepc/

Virtual Interim Meeting Tips
This session is (still) being recorded

● Click to get into the speaker queue.
● Click to get out of the speaker queue.
● Please wait for microphone access to be granted before

speaking.
● If you jump the speaker queue, you will be muted.
● Please use headphones when speaking to avoid echo.
● Please state your full name before speaking.
● Poll mechanism may be used to gauge the “sense of the

room”.

6

Understanding Document Status
● Hosting within the W3C repo does not imply adoption by the

WG.
○ WG adoption requires a Call for Adoption (CfA) on the

mailing list.
● Editor’s drafts do not represent WG consensus.

○ WG drafts do imply consensus, once they’re confirmed
by a Call for Consensus (CfC) on the mailing list.

○ Possible to merge PRs that may lack consensus, if a
note is attached indicating controversy.

7

Issues for Discussion Today

● 08:10 - 08:30 AM Mediacapture-screen-share (Elad)
● 08:30 - 08:40 AM A message from our sponsor (Fippo)
● 08:40 - 09:00 AM WebRTC NV-Use Cases (Bernard & Tim)
● 09:00 - 09:20 AM IceController (Sameer & Peter)
● 09:20 - 09:50 AM Encoded Transform Codec Negotiation (Harald)
● 09:50 - 10:00 AM Wrapup and Next Steps (Chairs)

Time control:
● A warning will be given 2 minutes before time is up.
● Once time has elapsed we will move on to the next item.

8

Mediacapture-screen-share (Elad)
Start Time: 08:10 AM
End Time: 08:30 AM

9

For Discussion Today
● Make CaptureController inherit from EventTarget (Issue 268)
● Improve upon CaptureStartFocusBehavior.no-focus-change (Issue 263)
● Allow apps to avoid riskier display-surface types (Issue 261)

10

https://github.com/w3c/mediacapture-screen-share/issues/268
https://github.com/w3c/mediacapture-screen-share/issues/263
https://github.com/w3c/mediacapture-screen-share/issues/261

Désolé

“The present letter is a very long one,
simply because I had no leisure to make it shorter.”

– Blaise Pascal

11

Issue 268: Make CaptureController inherit from EventTarget

12

CaptureController…
● …was recently introduced.
● …is optional.
● …is immutably associated with a “capture session.”
● …is only currently used to expose setFocusBehavior().

Inheriting from EventTarget can only be properly done in the original spec.
● Immediate potential usage by Screen-Capture Mouse Events.
● Potential usage for other hypothetical uses:

○ Events when captured surface changes.
○ Events when the user pauses the capture through the UA or OS.
○ Events if the app wants to register a handler for a capture initiated

from the captured surface, as macOS Sonoma allows.

https://github.com/w3c/mediacapture-screen-share/issues/268
https://github.com/screen-share/mouse-events

CaptureController.serFocusBehavior(enum) accepts two possible enum
values:

● The former essential means “focus the captured tab or window.”
● The latter…

○ Intended - “keep the capturing application focused.”
○ Result - unclarity in the case of Safari, because the user-flow of

picking is composed of interaction with the to-be-captured window.

Issue 263: Improve upon CaptureStartFocusBehavior.no-focus-change

13

https://github.com/w3c/mediacapture-screen-share/issues/263

Issue 263: Proposal

14

1. Add “focus-capturing-application”
2. Existing implementations retain “no-focus-change” and it’s redefined as

“keep in focus whichever surface was last focused following the user’s
interaction with the UA and/or OS.”

3. Longer-term, deprecating “no-focus-change” is on the table.

https://github.com/w3c/mediacapture-screen-share/issues/263

Issue 261: Allow apps to avoid riskier display-surface types

Proposal - allow applications calling getDisplayMedia() to request the user
agent to exclude monitors from the selection offered to the user.

15

https://github.com/w3c/mediacapture-screen-share/issues/261

A hypothetical company called HypComp uses a hypothetical video-conferencing application
called VC-app.

For simplicity, let’s assume that the list of users can only be set before the call. Now:
● All participants are HypComp employees? Allow them to share anything.
● Externals present? Minimize risk to company IP by preventing full-screen sharing.

Considered alternatives:
● Can’t use a policy; users will join multiple calls throughout their day.
● VC-app could call getDisplayMedia() again, but that will perplex and frustrate users.

Added benefit:
● If the UA allows dynamic switching between windows and screens, as Safari does, then it’s

helpful to suppress this option. VC-app cannot react dynamic switching in time and pause
the capture otherwise (at least not without auto-pause; shameless plug).

Issue 261: Motivation

16

https://github.com/w3c/mediacapture-screen-share/issues/255
https://github.com/w3c/mediacapture-screen-share/issues/261

● The spec disallows constraining the choice offered to the user.
● The rationale is that it protects the user from being nudged towards

sharing something risky with a malicious application.
● The riskiest option is the current screen:

○ Contains the current tab, which is under the capturer’s control.
○ Contains the maximum other information.

● A precedent where we allowed constraining the selection is
selfBrowserSurface, after which the current proposal is modelled. The
rationale employed there applies here too.

Issue 261: Security

17

https://www.w3.org/TR/screen-capture/#dom-displaymediastreamoptions-selfbrowsersurface
https://github.com/w3c/mediacapture-screen-share/issues/261

Discussion (End Time: 08:30)

18

A message from our sponsor (Fippo)
Start Time: 08:30 AM
End Time: 08:40 AM

19

Requesting keyframes via setParameters #167
● 👎 on adding to encoding parameters

○ Not persistent so not a parameter
● Proposal: add a second parameter to setParameters

■ setParameters(RTCRtpSendParameters parameters,
optional sequence<VideoEncoderEncodeOptions>

 encodeOptions);
■ Still explicit and in sync with other setParameters changes
■ Sequence of the same length as parameters.encodings
■ VideoEncoderEncodeOptions from WebCodecs
■ First time we reuse WebCodecs

IDL in WebRTC directly?
■ Do we want to go in this direction?

20

https://github.com/w3c/webrtc-extensions/pull/167
https://w3c.github.io/webcodecs/#dictdef-videoencoderencodeoptions

Discussion (End Time: 08:40)

21

WebRTC-NV Use Cases (Bernard & Tim)
Start Time: 08:40 AM
End Time: 09:00 AM

22

Proposals from the May Meeting
● Rename it. Proposal: “WebRTC Extended Use Cases”. Done.

● Focus on things that can only/best be done by WebRTC (p2p etc)
● Remove use cases that are now met by other standards
● Include use cases that have no requirements but extend RFC 7478
● Remove use cases that don’t get consensus within a few months
● Remove requirements that don’t get consensus within a few months
● Remove use cases that don’t add new requirements
● Proposed API changes should include changes to the use-case doc
● Define the relationship between this doc and explainers
● Broaden the input somehow - perhaps via webrtc.nu ?

23

Remove Use Cases That Don’t Add New Req’ts
● PR 112: Remove Section 3.9: Reduced Complexity Signaling
● PR 113: Remove Machine Learning Use Case (Section 3.7)

24

https://github.com/w3c/webrtc-nv-use-cases/pull/112
https://github.com/w3c/webrtc-nv-use-cases/pull/113

PR 112: Remove Section 3.9: Reduced Complexity Signaling

● Use case has no requirements.
● Use case has been partially addressed via the WHIP protocol developed

within the IETF WISH WG.

25

https://github.com/w3c/webrtc-nv-use-cases/pull/112

PR 113: Remove Machine Learning Use Case (Section 3.7)

● Use case does not add any requirements beyond those for the Funny Hats
use case (Section 3.6).

● This use case includes Requirement N22 (efficient media manipulation via
GPUs) that seems questionable:
○ Efficient media manipulation != efficient machine learning
○ GPUs are not the only way to accelerate Machine learning

■ WASM SIMD?
■ NPUs?

○ Machine learning performance is not in scope for WEBRTC WG:
■ Machine Learning APIs are developed in the Machine Learning WG
■ WebGPU WG owns APIs relating to GPUs.
■ WASM is developed in the WASM WG.

● Can we remove requirement N22 entirely?
○ Reqt makes more sense for Funny Hats, but is it actionable in this WG?

26

https://github.com/w3c/webrtc-nv-use-cases/pull/113
https://www.w3.org/groups/wg/webmachinelearning/
https://www.w3.org/2020/gpu/
https://www.w3.org/groups/wg/wasm/

PR 113: Remove Machine Learning Use Case (cont’d)

27

https://github.com/w3c/webrtc-nv-use-cases/pull/113

PR 113: Remove Machine Learning Use Case (cont’d)

28

https://github.com/w3c/webrtc-nv-use-cases/pull/113

PR 113: Remove Machine Learning Use Case (cont’d)

29

https://github.com/w3c/webrtc-nv-use-cases/pull/113

Proposals from the May Meeting
● Rename it. Proposal: “WebRTC Extended Use Cases”. Done.

● Focus on things that can only/best be done by WebRTC (p2p etc)
● Remove use cases that are now met by other standards
● Include use cases that have no requirements but extend RFC 7478
● Remove use cases that don’t get consensus within a few months
● Remove requirements that don’t get consensus within a few months
● Remove use cases that don’t add new requirements
● Proposed API changes should include changes to the use-case doc
● Define the relationship between this doc and explainers
● Broaden the input somehow - perhaps via webrtc.nu ?

30

Process changes

31

● Proposed API changes should include changes to the use-case doc
● Define the relationship between this doc and explainers

● Do we agree in principle to these ?

● If so where should a PR describing them reside?

Discussion (End Time: 09:00)

32

IceController (Sameer & Peter)
Start Time: 09:00 AM
End Time: 09:20 AM

33

Issue 166 - prevent candidate pair removal

Use case: connection redundancy

Keep one or more backup connections around for if/when the active
connection deteriorates

Extend with further improvements - switch to a backup connection
without an ICE restart or waiting for an ICE disconnect

Now: PR 168

https://github.com/w3c/webrtc-extensions/issues/166
https://github.com/w3c/webrtc-extensions/pull/168

PR 168 - prevent candidate pair removal

https://github.com/w3c/webrtc-extensions/pull/168

WebRTC ICE incremental improvements
● Prevent removal of candidate pairs - Issue 166
● Remove candidate pairs - Issue 170
● Control selection of candidate pair - Issue 171
● (?) Observe candidate pair states
● Observe result/RTT of outgoing checks
● Control frequency of outgoing checks of particular candidate pairs
● Prevent outgoing checks of particular candidate pairs
● Control order and timing of outgoing checks
● Observe presence of not of incoming checks or media for particular candidate pairs
● Gather local candidates for new network interfaces
● Re-gather local candidates of previously failed network interfaces
● Prevent removal of local candidates
● Remove local candidates
● Construct IceTransport without PeerConnection
● Support forking

https://github.com/w3c/webrtc-extensions/issues/166
https://github.com/w3c/webrtc-extensions/issues/170
https://github.com/w3c/webrtc-extensions/issues/171

Issue 170 - remove candidate pairs

Use case: clean up redundant connections
● Release local and network resources taken up by unnecessary

candidates

● Stop sending STUN checks on the removed candidates

partial interface RTCIceTransport {

 undefined pruneCandidatePairs(sequence<RTCIceCandidatePair> pairs);

}

https://github.com/w3c/webrtc-extensions/issues/170

Use case: switch to a redundant connection
● switch to a better connection without an ICE restart, or without

waiting for an ICE disconnect

partial interface RTCIceTransport {

 Promise<undefined> setSelectedCandidatePair(RTCIceCandidatePair pair);

}

Issue 171 - select a candidate pair

https://github.com/w3c/webrtc-extensions/issues/171

● Add RTCIceCandidatePair interface
○ breaking change dictionary→interface

■ local / remote are not constants in dictionary
○ Alternatively, interface by a new identifier?
○ Alternatively, type any for candidatePair attributes

● Return promise or undefined from prune() / setSelected()
○ prune() isn't async, so return immediately
○ setSelected() asynchronously indicates completion, so promise

■ Alternatively, return undefined, and let
selectedCandidatePairChange event indicate completion

Discussion (End Time: 09:20)

39

Encoded Transform Codec Negotiation
(Harald)
Start Time: 09:20 AM
End Time: 09:50 AM

40

Negotiating Custom
Codecs

 (recap from March)

Transforming content and being truthful
about it

Issue #172

https://github.com/w3c/webrtc-encoded-transform/issues/172

The Problem with Encoded Transform
● An app sets up a connection, negotiating a set of codecs
● The app sender inserts a transform, changing the format on

the wire
● The app receiver reverses the transform
● Problem: Elements on the way (SFUs, packetizers) expect

the negotiated format, not the transformed format
● This complicates things. Complexity is bad.

Solution: Negotiate what you send.

The Encoded Transform model

Encoder Transform Packetizer

SDP negotiation
moduleBrowser

capabilities
Offer/Answer

Packets

The Enhanced Encoded Transform model

Encoder Transform Packetizer

SDP negotiation
moduleBrowser

capabilities
Offer/Answer

Packets

Application

Operations in the Enhanced Encoded Transform
● The application tells the SDP module about new formats
● The application tells the encoder what format to encode to
● The other modules of the system operate as before
In particular:
● The SDP module negotiates over the set of known formats,

with the normal controls over what format to select
● The encoder encodes to a supported format
● The packetizer is configured by the SDP module as before
(The receiving side functions similarly)

New APIs needed to achieve this functionality
New information needed about codecs - this allows SDP to configure the packetizer

partial dictionary RTCRtpCodecCapability {

 DOMString packetizationMode;

}

Pre-negotiation calls - these allow SDP to negotiate support of “custom” codecs

PeerConnection.addSendCodecCapability(DOMString kind, CodecCapability capability)

PeerConnection.addReceiverCodecCapability(DOMString kind, CodecCapability capability)

After creating senders and receivers - these allow the app to select
the encoder and PT->decoder mapping
RTCRtpSender.setEncodingCodec(RTCCodecParameters parameters) // Alternatively, extensions PR #147

RTCRtpReceiver.addDecodingCodec(CodecParameters parameters)

https://github.com/w3c/webrtc-extensions/pull/147

Example Code - Sender
customCodec = {

 mimeType: “video/acme-encrypted”,

 clockRate: 90000,

 sdpFmtpLine = “encapsulated-codec=vp8”,

 packetizationMode = “video/vp8”,

};

pc.addSenderCodecCapability(‘video’, customCodec);
sender = pc.AddTrack(videotrack);
// Negotiate as usual
for (codec in sender.getParameters().codecs) {
 if (codec.mimeType == “video/acme-encrypted”) {
 encryptedPT = codec.payloadType;
 }
}
if (!encryptedPT) { /* failure; don’t encrypt */ return; }
(readable, writable) = sender.getEncodedStreams();

readable.pipeThrough(new TransformStream(
 transform: (frame) => {

metadata = frame.metadata();
 if (metadata.payloadType == expectedPT) {
 encryptBody(frame);
 metadata = frame.metadata();
 metadata.pt = encryptedPT;
 frame.setMetadata(metadata);
 writable.write(frame);
 } // “Else” branch depends on application
 }
}).pipeTo(writable);

Example Code - Receiver
pc.AddReceiverCodecCapability(customCodec);
// Negotiation goes here
pc.ontrack = (receiver) => {

 for (codec in receiver.getParameters().codecs) {
 if (codec.mimeType == “video/acme-encrypted”) {
 encryptedPT = codec.payloadType;
 }
 }
 if (!encryptedPT) { /* Failure, don’t decrypt */ return; }
 receiver.addDecodingCodec({mimeType: video/vp8, payloadType=208});
 (readable, writable) = receiver.getEncodedStreams();
 readable.pipeThrough(new TransformStream(
 transform: (frame) => {
 metadata = frame.metadata();
 if (metadata.payloadType == encryptedPT) {
 decryptBody(frame);
 metadata.payloadType = 208;
 } // “Else” branch will depend on application
 writable.write(frame);
 }
 }).pipeTo(writable);
};

New: PR 186

● Closely follows proposal from March
● Adds an explainer and some API changes
● Needs some exports from webrtc-pc
● Implementation started in March at IETF

hackathon; not yet functional, but no
showstoppers found

● Proposing this API for adoption.
49

https://github.com/w3c/webrtc-encoded-transform/pull/186

Discussion (End Time: 09:50)

50

Wrap Up and Next Steps
(End Time: 10:00)

51

● Next step 1
● Next step 2

Name that Bird

52

Thank you

Special thanks to:

WG Participants, Editors & Chairs

53

