W3C WebRTC
WG Meeting

July 18, 2023
8 AM - 10 AM

W3C WG IPR Policy

e This group abides by the W3C Patent Policy
https://www.w3.org/Consortium/Patent-Policy/

e Only people and companies listed at
https://www.w3.0rg/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!

e \Welcome to the July 2023 interim meeting of
the W3C WebRTC WG, at which we will

cover.

o Extended Use Cases, setMetadata(), lceController,
Encoded Transform, device-id in permissions

e Future meetings:
o September 19
o QOctober 17
o November 21
o December 12

https://www.w3.org/2011/04/webrtc/wiki/Main_Page#Meetings
https://www.w3.org/2011/04/webrtc/wiki/September_19_2023
https://www.w3.org/2011/04/webrtc/wiki/October_17_2023
https://www.w3.org/2011/04/webrtc/wiki/November_21_2023
https://www.w3.org/2011/04/webrtc/wiki/December_12_2023

About this Virtual Meeting

Meeting info:

©)

https://www.w3.0rg/2011/04/webrtc/wiki/July 18 2023

Link to latest drafts:

@)

0O O OO0 OO0 O o o0 O O O O o

O

https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-extensions/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.qithub.io/mediacapture-record/
https://w3c.qithub.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions/

https://w3c.qithub.io/webrtc-stats/
https://w3c.qithub.io/mst-content-hint/

https://w3c.qgithub.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://github.com/w3c/webrtc-encoded-transform
https://github.com/w3c/mediacapture-transform
https://qithub.com/w3c/webrtc-svc
https://qithub.com/w3c/webrtc-ice

Link to Slides has been published on WG wiki

Scribe? IRC http://irc.w3.org/ Channel: #webrtc

The meeting is (still) being recorded. The recording will be public.
Volunteers for note taking?

https://www.w3.org/2011/04/webrtc/wiki/July_18_2023#WebRTC_WG_Virtual_Interim
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-extensions/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions/
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/mst-content-hint/
https://w3c.github.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://github.com/w3c/webrtc-encoded-transform
https://github.com/w3c/mediacapture-transform
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://www.w3.org/2011/04/webrtc/wiki/July_18_2023#WebRTC_WG_Virtual_Interim
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

W3C Code of Conduct

e This meeting operates under W3C Code of Ethics and
Professional Conduct

e We're all passionate about improving WebRTC and the

Web, but let's all keep the conversations cordial and
professional

https://www.w3.org/Consortium/cepc/
https://www.w3.org/Consortium/cepc/

Virtual Interim Meeting Tips

This session is (still) being recorded

Click M raisenand to get into the speaker queue.

Click ¥ wwernand to get out of the speaker queue.

Please wait for microphone access to be granted before
speaking.

If you jJump the speaker queue, you will be muted.
Please use headphones when speaking to avoid echo.
Please state your full name before speaking.

Poll mechanism may be used to gauge the “sense of the
room”.

Understanding Document Status

e Hosting within the W3C repo does not imply adoption by the
WG.
o WG adoption requires a Call for Adoption (CfA) on the
mailing list.
e Editor’s drafts do not represent WG consensus.
o WG drafts do imply consensus, once they’re confirmed
by a Call for Consensus (CfC) on the mailing list.
o Possible to merge PRs that may lack consensus, if a
note is attached indicating controversy.

Issues for Discussion Today

08:10 - 08:45 AM WebRTC Extended Use Cases (Bernard, Sun & Tim)
08:45 - 09:05 AM setMetadata (Palak Agarwal)

09:05 - 09:20 AM Encoded Transform (Youenn)

09:20 - 09:35 AM Ice Controller API (Sameer Vijakar)

09:35 - 09:50 AM deviceld in permissions.query (Jan-lvar)

09:50 - 10:00 AM Wrapup and Next Steps (Chairs)

Time control:

e A warning will be given 2 minutes before time is up.
e Once time has elapsed we will move on to the next item.

WebRTC Extended Use Cases
(Bernard, Sun & Tim)

Start Time: 08:10 AM
End Time: 08:45 AM

Proposals from the May Meeting

Rename it. Proposal: “WebRTC Extended Use Cases™. Done.

Focus on things that can only/best be done by WebRTC (p2p etc)
Remove use cases that are now met by other standards

Include use cases that have no requirements but extend RFC 7478
Remove use cases that don’t get consensus within a few months
Remove requirements that don’t get consensus within a few months
Remove use cases that don’'t add new requirements

Proposed API changes should include changes to the use-case doc
Define the relationship between this doc and explainers

Broaden the input somehow - perhaps via webrtc.nu ?

10

Status of Section 3.2: Low Latency Streaming

e CFC concluded on January 16, 2023: Summary
o 6 responses received, 5 in support, 1 no opinion
e Section 3.2: Low Latency Streaming
o Open Issue: 103 (relates to requirements N37, N38, N39)
o Section 3.2.1: Game Streaming
m Open Issue: 94 (game pad input)
o Section 3.2.2: Low Latency Broadcast with Fanout

11

https://lists.w3.org/Archives/Public/public-webrtc/2023Jan/0062.html
https://www.w3.org/TR/webrtc-nv-use-cases/#low-latency-streaming
https://github.com/w3c/webrtc-nv-use-cases/issues/103
https://www.w3.org/TR/webrtc-nv-use-cases/#game-streaming
https://github.com/w3c/webrtc-nv-use-cases/issues/94
https://www.w3.org/TR/webrtc-nv-use-cases/#auction

Section 3.2.1: Game Streaming

§ 3.2.1 Game streaming

Game streaming involves the sending of audio and video (potentially at high resolution and framerate) to the
recipient, along with data being sent in the opposite direction. Games can be streamed either from a cloud
service (client/server), or from a peer game console (P2P). It is highly desirable that media flow without
interruption, and that game players not reveal their location to each other. Even in the case of games streamed
from a cloud service, it can be desirable for players to be able to communicate with each other directly (via chat,
audio or video).

NOTE

This use case has completed a Call for Consensus (CfC) but has unresolved issues.

Requirement | Description
ID

N15 The application must be able to take steps to ensure a low and consistent latency for audio,
video and data under varying network conditions. This may include tweaking of transport
parameters for both media and data.

N37 It must be possible for the user agent's receive pipeline to process video at high resolution
and framerate (e.g. without copying raw video frames).

N38 The application must be able to control the jitter buffer and rendering delay.

Experience: Microsoft's Xbox Cloud Gaming and NVIDIA's GeForce NOW are examples of this use case, with
media transported using WebRTC A/V or RTCDataChannel.

12

Section 3.2.2: Low latency broadcast w/fanout

§ 3.2.2 Low latency Broadcast with Fanout

There are streaming applications that require large scale as well as low latency. Examples include sporting
events, church services, webinars and company Town Hall' meetings. Live audio, video and data is sent to
thousands (or even millions) of recipients. Limited interactivity may be supported, such as allowing authorized
participants to ask questions at a company meeting. Both the media sender and receivers may be behind a NAT.
P2P relays may be used to improve scalability, potentially using different transport than the original stream.

NOTE

This use case has completed a Call for Consensus (CfC) but has unresolved issues.

ID

N15 The application must be able to take steps to ensure a low and consistent latency for audio,
video and data under varying network conditions. This may include tweaking of transport
parameters for both media and data.

N39 A user-agent must be able to forward media received from a peer to another peer.
Applications require access to encoded chunk metadata as well as information from the RTP
header to provide for timing, media configuration and congestion control. This includes a
mechanism for a relaying peer to obtain a bandwidth estimate.

Experience: pipe, Peer5 and Dolby are examples of this use case, with media transported using WebRTC A/V or
RTCDataChannel.

For Discussion Today

e ISsSues

O
O

Issue 94: Section 3.2.1: Improvements for Game pad input
Issue 103: Section 3.2: Feedback related to WebRTC-NV Low
Latency Streaming Use Case

e PRs

O

O O O O

PR 116: Remove specific hardware requirement (GPU) (Bernard)

PR 117: Section 3.2.1: Update Requirement N37 (Bernard)

PR 120: Section 3.2.2: Add Requirements N13 and N16 (Bernard)
PR 121: Section 3.2.1: Clarify meaning of “low latency” (Bernard)
PR 119: Section 3.2: Streaming should not require user prompts

without not sending media. (Sun)

PR 118: Section 3.2.1: Clarify game streaming requirements (Sun
& Bhavani)

14

https://github.com/w3c/webrtc-nv-use-cases/issues/94
https://github.com/w3c/webrtc-nv-use-cases/issues/103
https://github.com/w3c/webrtc-nv-use-cases/pull/116
https://github.com/w3c/webrtc-nv-use-cases/pull/117
https://github.com/w3c/webrtc-nv-use-cases/pull/120
https://github.com/w3c/webrtc-nv-use-cases/pull/121
https://github.com/w3c/webrtc-nv-use-cases/pull/119
https://github.com/w3c/webrtc-nv-use-cases/pull/118

Issue 94: Improvements for game pad input (Section 3.2.1)

e Existing Issues filed and PRs submitted relating to game pad input:

O

Issue 4: Should fire events instead of using passive model

o PR 152: Add gamepad input events
e Status of incubation/development efforts:
o Chrome status: Gamepad button and axis events

©)
©)

Documentation (03 August 2021)
Chromium tracking issue (last entry 20 August 2021):
https://bugs.chromium.org/p/chromium/issues/detail?id=856290

e Questions

O O O O O

Are implementation efforts stalled? Any chance of revival?
Any relationship to work in the scope of the WEBRTC WG?
Is there a reason to add a requirement to Section 3.2.17?

|s there a useful editorial change to make (e.g. link to Issues/PRs)?
Or should we close the issue?

15

https://github.com/w3c/webrtc-nv-use-cases/issues/94
https://github.com/w3c/gamepad/issues/4
https://github.com/w3c/gamepad/pull/152
https://chromestatus.com/feature/5989275208253440
https://docs.google.com/document/d/1rnQ1gU0iwPXbO7OvKS6KO9gyfpSdSQvKhK9_OkzUuKE/edit#heading=h.5ugemo7p04z9
https://bugs.chromium.org/p/chromium/issues/detail?id=856290

Issue #103: Feedback related to WebRTC-NV Low Latency Streaming Use Case

From: Youenn Fablet <youenn@apple.com>

Date: Mon, 16 Jan 2023 10:33:28 +0100

To: Bernard Aboba <Bernard.Aboba@microsoft.com>

Cc: "public-webrtc@W3.org" <public-webrtc@wa3.org>

Message-id: <EE006548-9A1A-49F5-A313-B1A8B93C64C1@apple.com>

Both use cases are already deployed so I wonder whether they qualify as NV.
They probably qualify as NV if some of their corresponding requirements are not already met with existing web technologies.
When reading the requirements, it seems some/most of them are already met.

The term “low latency” in particular is vague even in the context of WebRTC.
Low latency broadcast with fanout is already achieved by some web sites but it is not clear where we are trying to improve upon existing deployed services.
For instance, are we trying to go to ultra low latency where waiting for an RTP assembled video frame by the proxy is not good enough?

Looking at the requirements:

- N37 is already achieved or seems like an implementation problem that is internal to User Agents.

- N38 is partially achieved via playoutDelay and/or WebRTC encoded transform. I am not clear whether this use case is asking for more than what is already provided.
- N39 is already achieved via data channel and/or WebRTC encoded transform without any change. I am guessing more is required. If so, can we be more specific?

Thanks,
Y

16

https://github.com/w3c/webrtc-nv-use-cases/issues/103

Issue #103: Statement of Principles

e Requirements should be specific and actionable

o Specific: It should be possible to determine whether the requirement is met
m Example: “Low latency” should be defined.

o Actionable: It should be possible to develop API proposals to address the

requirements.
m Example: Does requirement N39 require new APIs?
m Performance requirements may not be if they can be met by software
implementation improvements or better hardware, without API changes.

e |t should be possible to determine whether a requirement is met
Required by the W3C process!
Is the requirement enabled by a specification or a proposed PR?

m Example: Requirement N38 is met by jitterBufferTarget. How do we indicate that?
Has an Issue been filed, which if resolved, would enable the requirement to be met?

m Example: Issue 146: Exposing decode errors / SW fallback as an event
Is the specification or PR testable? Is there a test?

O O

O

O

17

https://github.com/w3c/webrtc-nv-use-cases/issues/103
https://github.com/w3c/webrtc-extensions/issues/146

What is the relationship of a Use Case To...

e Issues (what specific problems are being referred to)
o Should a use case link to related Issues?
m Example: Should Requirement N37 (Ability to support high
resolution/framerate) link to related issues (e.g. hardware acceleration)?
m Advantage: Links requirements to specific Issues whose resolution can be
tracked
e API Proposals (what API proposals relate to the problems)
o Should a use case link to API proposals?
m Clarifies whether a use case has API proposals
m Links use case to an API proposal whose progress can be tracked
e Explainers (How the proposals relate to the use cases)
o Should explainers link to use cases?
m Clarifies whether an API proposal is solving a use case

18

What do we do with aspirations?

e NV was a place to put hopes and dreams
Many of them have been realized
e (although not always in the way that NV described)

Where should we put hopes and dreams ?
Are they out of scope for a standards group?

19

PR 116: Remove specific hardware reference (GPU)

e Rationale

o Efficient media manipulation may involve multiple mechanisms, including
hardware acceleration (GPU, NPU, etc.), WASM SIMD, conversions without

4+

copies, etc.

o Focus on GPU is too narrow.

% 4 mEEE " index.html (O]

@@ -495,7 +495,7 @@ <h3>Funny Hats</h3>

(@@

<tr>
<td>N22</td>
<td>It must be possible to do efficient media manipulation
in worker threads by utilizing the GPU.</td>
</tr>
<tr>
<td>N24</td>

-937,7 +937,7 @@ <h3>Requirements Summary</h3>

<tr id="N22">
<td>N22</td>
<td>It must be possible to do efficient media
manipulation in worker threads by utilizing the GPU.</td>

</tr>
<tr id="N23">
<td>N23</td>

495
496
497
498
499

501

[viewed 3

<Er>
<td>N22</td>
<td>It must be possible to do efficient media manipulation
in worker threads.</td>
</tr>
<tr>
<td>N24</td>

<tr id="N22">
<td>N22</td>
<td>It must be possible to do efficient media

manipulation in worker threads.</td>

</tr>
<tr id="N23">
<td>N23</td>

20

https://github.com/w3c/webrtc-nv-use-cases/pull/116

PR 117: Update Requirement N37

e Rationale
o Existing requirement N37 is not actionable.
o Need to identify the Issue and required API changes. See:

m Issue 146: Exposing decode errors / SW fallback as an event

283
284
285
286
287
288

14 EEEE | index.html (0]

@@ -283,9 +283,10 @@ <h4>Game streaming</h4>

</tr>
<tr>
<td>N37</td>

- <td>It must be possible for the user agent's receive pipeline to process
= video at high resolution and framerate (e.g. without copying raw video
= frames).</td>

</tr>
<tr>
<td>N38</td>

@@ -1014,9 +1015,10 @@ <h3>Requirements Summary</h3>

</tr>
<tr id="N37">
<td>N37</td>

- <td>It must be possible for the user agent's receive pipeline to process
- video at high resolution and framerate (e.g. without copying raw video
- frames).</td>

</tr>
<tr id="N38">
<td>N38</td>

290
291
292

1015
1016
1017
1018
1019
1020
1021
1022
1023
1024

+ o+ o+ 4+

+ + + o+

(3 viewed (9]

</tr>
<tr>
<td>N37</td>
<td>It must be possible for an application to determine whether
hardware decode is supported, as well as to receive events
indicating whether hardware decode, once negotiated, subsequently
fails or becomes unavailable.</td>
</tr>
<tr>
<td>N38</td>

</tr>
<tr id="N37">
<td>N37</td>
<td>It must be possible for an application to determine whether
hardware decode is supported, as well as to receive events
indicating whether hardware decode, once negotiated, subsequently

fails or becomes unavailable.</td>

</tr>
<tr id="N38">
<td>N38</td>

https://github.com/w3c/webrtc-nv-use-cases/pull/117
https://github.com/w3c/webrtc-extensions/issues/146

PR 120: Section 3.2.2: Add Requirements N13 and N16 (Bernard)

e Rationale
o Fanout implementations currently using data channel on the main thread
have encountered latency issues. Solutions:
m Support for data channel in workers
m Support for partial reliability.

N13 It must be possible to support data exchange in a web, service, or shared worker. Support for
service workers allows the page to issue a fetch() which can be resolved in the service
worker.

N16 It must be possible to send arbitrary data reliable, unreliable or partially reliable with a specific

maximum number of retransmissions or a specific maximum timeout.

22

https://github.com/w3c/webrtc-nv-use-cases/pull/120

PR 121: Section 3.2.2: Clarify meaning of “low latency” (Bernard)

e Rationale

o There are some uses (e.g. webinars, company meetings) that
require “low latency” (glass-glass latency < 1 second).
m Existing implementations often use data channel for fanout. These can
achieve acceptable latency with requirements N13 and N16.

o There are other uses (e.g. auctions, betting) where “ultra low
latency” (glass-glass latency < 500ms) is required.

m WeDbRTC is popular for these “ultra low latency” uses (e.g. WHIP/WHEP)
m Forthese uses, data channel fanout may add too much latency even

with N13 and N16.

Requirement N39 covers RTP fanout (which uses low latency
congestion control such as gcc, rather than the NewReno in data

channel)

Requirement N43 proposed (see next presentation)
23

https://github.com/w3c/webrtc-nv-use-cases/pull/120

PR 121: Section 3.2.2: Clarify meaning of “low latency” (cont’d)

304
305

306
307

308

309

310
311

18 WEEE ' index.html [(J

@@ -298,14 +298,16 @@ <h4>Game streaming</h4>

transported using WebRTC A/V or RTCDataChannel.</p>
</section>
<section id="auction">
<h4a>Low latency Broadcast with Fanout</h4>
<p>There are streaming applications that require large scale as well as low latency.
Examples include sporting events, church services, webinars and company 'Town Hall'
meetings.
Live audio, video and data is sent to thousands (or even millions) of recipients.

Limited interactivity may be supported, such as allowing authorized participants to ask

questions at a company meeting. Both the media sender and receivers may be behind a NAT.

P2P relays may be used to improve scalability, potentially using different transport
than

the original stream.</p>

<p class="note">This use case has completed a Call for Consensus (CfC) but has
unresolved issues.</p>
<table class="simple">

<thead>

298
299
300
301
302
3e3

3e4
305

306
307

308

309

310
311

312
313

&9

+

4

T

+

(3 viewed [R

transported using WebRTC A/V or RTCDataChannel.</p>
</section>

<section id="auction">

<h4>Low latency and ultra-low Latency Broadcast with Fanout</h4>
<p>There are streaming applications that require large scale as well as low latency
(glass-glass latencies < 1 second) or ultra-low latency (glass-glass latencies < 500
ms).
Low latency examples include sporting events, church services, webinars and company
‘Town Hall' meetings. Ultra-low latency examples include auctions, betting and
financial news.
Live audio, video and data is sent to thousands (or even millions) of recipients.
Limited interactivity may be supported, such as allowing authorized participants to
ask
questions at a company meeting. Both the media sender and receivers may be behind a
NAT.
P2P relays may be used to improve scalability, potentially using different transport
than
the original stream.</p>

<p class="note">This use case has completed a Call for Consensus (CfC) but has
unresolved issues.</p>
<table class="simple">

<thead>

24

https://github.com/w3c/webrtc-nv-use-cases/pull/120

PR 119: Section 3.2: Streaming should not require user prompts without
sending media.

e Rationale

284
285
286
287
288

O

O

+ + + + +

Section 3.2.1: Gamers will be surprised by (and suspicious of)
permission prompts in games that do not use audio/video input (e.g.
to support audio/video chat).

Section 3.2.2: Conventional streaming does not require audio/video
input permissions. Why should low latency streaming be different?

<tr>
<td>N36</td>
<td>An application that is only receiving but not sending media can operate
without prompts for camera and microphone permissions.</td>
</tr>
25

https://github.com/w3c/webrtc-nv-use-cases/pull/119

PR 118: Clarify Game Streaming requirements (Section 3.2)

e Rationale: Cloud Game Characteristics

©)

A highly interactive application that depends on continuous visual feedback to
user inputs.

The cloud gaming latency KPI would track Click to Pixel latency - time elapsed
between user input to when the game response is available at the user display
(where as non-interactive applications may track G2G latency as the KPI).
Requires low and consistent latency. Desirable C2P latency range is typically 30 -

150ms. A latency higher than 170 ms makes high precision games unplayable.

Loss of video is highly undesirable. Garbled or corrupt video with fast recovery
may be preferable in comparison to a video freeze.

Motion complexity can be high during active gameplay scenes.

Consistent latency is critical for player adaptability. Varying latency requires
players to adapt continuously which can be frustrating and break gameplay.

The combination of high complexity, ultra low latency and fast recovery will require
additional adaptive streaming and recovery techniques.

26

https://github.com/w3c/webrtc-nv-use-cases/pull/118

PR 118: Clarify Game Streaming requirements (Section 3.2)

ID

N48
(New)

N49
(New)

N50
(New)

N51
(New)

Requirement

Recovery using
non-key frames

Loss of encoder
-decoder
synchronicity
notification

Configurable
RTCP
transmission
interval

Improve
accuracy of
Jitter buffer
control

Description

WebRTC must support a mode in which it
allows video decoding to continue even after
a frame loss without waiting for a key frame
This enables addition of recovery methods
such as using frames containing intra coded
macroblocks and coding units.

The WebRTC connection should generate
signals indicating to encoder about loss of
encoder-decoder synchronicity (DPB buffers)
and sequence of the frame loss.(RFC 4585
section-6.3.3: Reference Picture Selection
Indication)

Application must be able to configure RTCP
feedback transmission interval (Ex:
Transport-wide RTCP Feedback Message)

Extend adaptation of the jitter buffer to
account for jitter in the pipeline upto the
frame render stage

Benefits to Cloud Gaming

Players can continue to game with partially
intelligible video.
Fast recovery from losses on the network

Fast recovery from losses on network.
Helps application to choose right recovery
method in lossy network.

Gaming is sensitive to congestion and
packet loss resulting in higher latency.
Consistent RTCP feedback helps
application to adapt video quality to
varying network (BWE and packet loss).

Increases accuracy of jitter buffer
adaptation and helps maintain consistent
latency

Is it Cloud Gaming
Specific?

Can be used by any
application where video
corruption is preferred to
video freezes

Can be used by any
application where video
corruption is preferred to
video freezes

Can be used by any
application where
latency buildup is not
acceptable.

Helps all low latency
applications, but is
necessary for Cloud
gaming

27

https://github.com/w3c/webrtc-nv-use-cases/pull/118

Discussion (End Time: 08:45)

28

setMetadata() (Palak Agarwal)
Start Time: 08:45 AM
End Time: 09:05 AM

29

setMetadata() for
redundant relay PCs

Palak Agarwal, Google

Existing use case - Section 3.2.2

§ 3.2.2 Low latency Broadcast with Fanout

There are streaming applications that require large scale as well as low latency. Examples include sporting
events, church services, webinars and company Town Hall' meetings. Live audio, video and data is sent to
thousands (or even millions) of recipients. Limited interactivity may be supported, such as allowing authorized
participants to ask questions at a company meeting. Both the media sender and receivers may be behind a NAT.
P2P relays may be used to improve scalability, potentially using different transport than the original stream.

31

https://www.w3.org/TR/webrtc-nv-use-cases/#auction

Example scenario

P1 @(—»Encoder

Receiving

SFU/Server Peer

Receiving
Peer

Receiving
Peer

Receiving
Peer

Receiving

SFU/Server
Peer

Receiving
Peer

Receiving
Peer

Problem: Peer fails unexpectedly

e Poses a streaming issue in Relay P2Ps. Causes disruption,
non-continuous playout

e Need for handling peer failures seamlessly (cannot wait for a keyframe)

Solution: Use redundant communication channels (i.e., multiple PCs)

33

Solution: Add redundant PCs

1
! Changes frameld,

! RTPtimestamp, etc. of
1

1

1

encoded frame

1
1
1
1
. e
1 e
| SFUIServer (1) : Eecelvmg
! ! Receiving S
i : Peer
1
1
| :
1
P5 @1 —Encoder ' Receiving
| Peer
! 1
1
! SFU/Server (2) i
! 1
| : I' 1
Encoder | Receiving
1
Receiving Hil]
Peer (b)

Receiving
Peer

Receiving
Peer

Problem: Switch between frames from PCs

Even with redundant channels, there will be interruptions/glitches while
switching to another PC as the incoming encoded frames are not identical

Proposed solution: Update the metadata of frames from either PC such
that frames with the same payload become interchangeable

35

Solution: setMetadata() for encoded frames

Changes frameld,

Encoded
Transform

! 1 : ________________________________ :
| RTPtimestamp, etc. | : ! Renderto
! i - .
! l g j PlaVOl;\t/f/’i-rfe(t;e' local video
! i i .| ver.getWriter !
| Ericoded F ! element or
| SR nico—e.—ramie>|RechC'l.receiver 3 : \«a‘f\-e-\“ :
! Server | | JS object that et canvas I
! ! ! setsMetadata R |
: ' ! on the two ' :
! ' ! incoming : '
' | ! frames to make ; H
| ! | them identical i |
! ! ! and dedupes i i
! SFUPeT] .. ! them into a 1wy |
. HERIL)
| Servereer 2 F_‘"|ram.e RecvPC2.receiver S0oRliane i "'-(ff'?f"e) Send |
1 i
| | ! .. .|RelayPC.sende Encoded |
i i : r.getWriter() frame to i
________________ 1 .
i next peer
1 1
i 1
i |
i |
1 1
i |
1 1
i |

Sample code

// Let recvPcl, recvPc2 be the receiving PCs.
recvPc{1|2}.ontrack = evt => {
transferFrames(evt.receiver.createEncodedStreams().readable.getReader());

}s

// Let relayPc be the PC used to relay frames to the next peer.
relayPcWriter = relayPc.sender.createEncodedStreams().writable.getWriter();

async function transferFrames(reader) {
while (true) {
const {frame, done} = await reader.read();
if (done) return;

frame.timestamp = getUnifiedTimestamp(frame);

frame.setMetadata(getUnifiedMetadata(frame));

if(!isDuplicate(frame)) {
relayPcWriter.write(frame);

37

Proposed requirement change

ID

N15 The application must be able to take steps to ensure a low and consistent latency for audio,
video and data under varying network conditions. This may include tweaking of transport
parameters for both media and data.

N39 A user-agent must be able to forward media received from a peer to another peer.
Applications require access to encoded chunk metadata as well as information from the RTP
header to provide for timing, media configuration and congestion control. This includes a
mechanism for a relaying peer to obtain a bandwidth estimate.

N43 The application can modify metadata on outgoing frames so that they fit smoothly within the
expected sequence of timestamps and sequence numbers.

38

Proposed API change

interface RTCEncodedVideoFrame {

readonly attribute RTCEncodedVideoFrameType type;

readenty attribute unsigned long timestamp; // RTP timestamp
attribute ArrayBuffer data;

RTCEncodedVideoFrameMetadata getMetadata();
void setMetadata(RTCEncodedVideoFrameMetadata metadata);

For this application, we need to change frameld and dependencies.
#162 outlines other possible metadata modifications.

39

https://github.com/w3c/webrtc-encoded-transform/issues/162

Proposed API change

interface RTCEncodedAudioFrame {
readenty attribute unsigned long timestamp; // RTP timestamp
attribute ArrayBuffer data;
RTCEncodedAudioFrameMetadata getMetadata();

40

Discussion (End Time: 09:05)

41

Encoded Transform (Youenn)
Start Time: 09:05 AM

End Time: 09:20 AM

42

Issue 188: Clarify why backpressure should be disabled
e \WebRTC Encoded Transform pipeline

L
a~a-=

43

https://github.com/w3c/webrtc-encoded-transform/issues/188

Issue 188: Clarify why backpressure should be disabled

e Is backpressure observable to the JS transform?

onrtctransform = event => {
process (event. transformer.readable.getReader ()

, event.transformer.writable.getWriter())

async function process (reader, writer)
{
// read chunk
const chunk = await reader.read();
if (chunk.done)
return;
// write chunk
writer.write (chunk.value) ;
// wait for writer to be ready
await writer.ready; - Promise resolution based on backpressure

// process next chunk

process (reader, writer);

https://github.com/w3c/webrtc-encoded-transform/issues/188

Issue 188: Clarify why backpressure should be disabled

UA adaptation mechanism

e \What if transform is writing too much data
o Network will not be able to sustain, packets will be dropped
o UA will be notified of this, at some point
o UA will instruct encoder to reduce throughput, at some point

45

https://github.com/w3c/webrtc-encoded-transform/issues/188

Issue 188: Clarify why backpressure should be disabled

ot et]

UA adaptation mechanism

e \What if transform is too slow
o UA knows this without having to rely on streams backpressure
o UA will reduce frame rate by dropping frames prior encoder

46

https://github.com/w3c/webrtc-encoded-transform/issues/188

Issue 188: Clarify why backpressure should be disabled

e Key takeaway: backpressure is
o Not needed here as UA knows both ends of the transform
o A great mechanism in some contexts
m Reliable networking like for file exchange
o Not very useful in lossy contexts
m Trading reliability for latency, adaptation will happen outside of
backpressure

e Fortunately, WhatWG streams spec acknowledges this

+o0 [S explicitly allowed as a valid high water mark. It causes backpressure to never be applied.

e Proposal: update specification to use +« and mention rationale as a
design note 47

https://github.com/w3c/webrtc-encoded-transform/issues/188

Discussion (End Time: 09:20)

48

Ice Controller APl (Sameer Vijaykar)
Start Time: 09:20 AM

End Time: 09:35 AM

49

ICE candidate pair selection and nomination - RFC 8445

ICE REC 8445 (and subsequent updates - REC 8838 Trickle ICE and RF
8863 ICE PAC) are strict wrt nomination.

Changing the nominated candidate pair - requires ICE restart

Section 8.1.1: Once the controlling agent has successfully nominated a candidate pair (Section
7.2.5.3.4), the agent MUST NOT nominate another pair for same component of the data stream within
the ICE session. Doing so requires an ICE restart.

Continue connectivity checks on non-nominated pairs - maybe OK?

Section 8.3.1: Once a checklist has reached the Completed state, the agent SHOULD wait an additional
three seconds, and then jt can cease responding to checks or generating triggered checks on all local
candidates other than the ones that became selected candidates.

Rejecting a nomination on the controlling side - perhaps OK

Section 7.3.1.5: If the controlled agent does not accept the request from the controlling agent, the
controlled agent MUST reject the nomination request with an appropriate error code response.

50

https://datatracker.ietf.org/doc/html/rfc8445
https://datatracker.ietf.org/doc/html/rfc8838
https://datatracker.ietf.org/doc/html/rfc8863
https://datatracker.ietf.org/doc/html/rfc8863
https://datatracker.ietf.org/doc/html/rfc8445#section-8.1.1
https://datatracker.ietf.org/doc/html/rfc8445#section-8.3.1
https://datatracker.ietf.org/doc/html/rfc8445#section-7.3.1.5
https://datatracker.ietf.org/doc/html/rfc8445

ICE candidate pair selection and nomination - RFC 8445

So how to change selected pair when directed by the application?

Expensive and slow to change with an ICE restart, i.e.
o follow same steps as an ICE restart, fire negotiationneeded
o retain candidates from previous ICE session
o nominate the application-indicated pair if checks succeed

Alternative - selection without nomination - permitted by RFC 8445

o Section 8.1.1: The criteria for stopping the connectivity checks and for picking a pair for nomination
are outside the scope of this specification ... data can always be sent on any valid pair, without
nomination.

o Controlling side simply starts sending data on a different valid pair.

o STUN checks may be sent indefinitely for keep-alives, upper limit suggested but not mandated.
o Prevent removal of candidates with cancelable onicecandidatepairremove event.

o Prevent nomination on controlling side with cancelable selectedcandidatepairchange event.

51

https://datatracker.ietf.org/doc/html/rfc8445#section-8.1.1
https://datatracker.ietf.org/doc/html/rfc8445

Discussion (End Time: 09:35)

52

deviceld in permissions.query (Jan-lvar)

Start Time: 09:35 AM
End Time: 09:50 AM

53

Issue 965: deviceld in permissions.query() is
unimplemented fingerprinting surface (Jan-lvar)

Our Permissions Integration adds biiclicia &

deviceId for "camera" "microphone" dictionary DevicePermissionDescriptor : PermissionDescriptor {
’ DOMString devicelId;

& "speaker-selection"” permissions. =

The idea was for JS to query permissions of individual media devices, which is only
useful on browsers that implement per-device permissions, currently Firefox. Mozilla,
however, won't be implementing the deviceld part, over fingerprinting concerns that
would extend beyond those of other browsers.

There are currently zero implementations, one (manual setSinkld) WPT, and AFAIK no
implementations planned.

| propose we remove this API (the deviceId member of permissions.query({name,
deviceId})) from mediacapture-main and mediacapture-output.

54

https://w3c.github.io/mediacapture-main/#permissions-integration
https://bugzilla.mozilla.org/show_bug.cgi?id=1815362#c1
https://github.com/web-platform-tests/wpt/blob/cad8b40a3edd96f8ec4e7bc9b0182b6396735192/audio-output/setSinkId-manual.https.html#L40
https://w3c.github.io/mediacapture-main/#permissions-integration
https://w3c.github.io/mediacapture-output/#permissions-integration
https://github.com/w3c/mediacapture-main/issues/965

Issue 965: deviceld in permissions.query() is
unimplemented fingerprinting surface (Jan-lvar)

1. Fingerprinting surface too much: 1 bit per device in users’ systems;
and defeats device exposure mitigations in enumerateDevices()

2. Existing API sufficient to negotiate consent for a camera and microphone:

If a "granted" permission is present on some, but not all, devices of a kind, a query without the deviceld
will return "granted".

If a "denied" permission is present on all devices of a kind, a query without the deviceId will return
"denied".

Firefox (the only browser to maintain temporal per-device permissions) will
prefer returning already granted devices instead of prompting when
possible, e.g. with getUserMedia({video: true, audio: true}).

3. Feature at risk / No web compat 55

https://github.com/w3c/mediacapture-main/issues/965

Discussion (End Time: 09:50)

56

Wrapup and Next Steps
Start Time: 09:50 AM

End Time: 10:00 AM

57

Thank you

Special thanks to:

WG Participants, Editors & Chairs

58

