
W3C WebRTC
WG Meeting

July 18, 2023
8 AM - 10 AM

Chairs: Bernard Aboba
Harald Alvestrand
Jan-Ivar Bruaroey 1

W3C WG IPR Policy
● This group abides by the W3C Patent Policy

https://www.w3.org/Consortium/Patent-Policy/
● Only people and companies listed at

https://www.w3.org/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

2

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!
● Welcome to the July 2023 interim meeting of

the W3C WebRTC WG, at which we will
cover:
○ Extended Use Cases, setMetadata(), IceController,

Encoded Transform, device-id in permissions
● Future meetings:

○ September 19
○ October 17
○ November 21
○ December 12

3

https://www.w3.org/2011/04/webrtc/wiki/Main_Page#Meetings
https://www.w3.org/2011/04/webrtc/wiki/September_19_2023
https://www.w3.org/2011/04/webrtc/wiki/October_17_2023
https://www.w3.org/2011/04/webrtc/wiki/November_21_2023
https://www.w3.org/2011/04/webrtc/wiki/December_12_2023

About this Virtual Meeting
● Meeting info:

○ https://www.w3.org/2011/04/webrtc/wiki/July_18_2023
● Link to latest drafts:

○ https://w3c.github.io/mediacapture-main/
○ https://w3c.github.io/mediacapture-extensions/
○ https://w3c.github.io/mediacapture-image/
○ https://w3c.github.io/mediacapture-output/
○ https://w3c.github.io/mediacapture-screen-share/
○ https://w3c.github.io/mediacapture-record/
○ https://w3c.github.io/webrtc-pc/
○ https://w3c.github.io/webrtc-extensions/
○ https://w3c.github.io/webrtc-stats/
○ https://w3c.github.io/mst-content-hint/
○ https://w3c.github.io/webrtc-priority/
○ https://w3c.github.io/webrtc-nv-use-cases/
○ https://github.com/w3c/webrtc-encoded-transform
○ https://github.com/w3c/mediacapture-transform
○ https://github.com/w3c/webrtc-svc
○ https://github.com/w3c/webrtc-ice

● Link to Slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● The meeting is (still) being recorded. The recording will be public.
● Volunteers for note taking? 4

https://www.w3.org/2011/04/webrtc/wiki/July_18_2023#WebRTC_WG_Virtual_Interim
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-extensions/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions/
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/mst-content-hint/
https://w3c.github.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://github.com/w3c/webrtc-encoded-transform
https://github.com/w3c/mediacapture-transform
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://www.w3.org/2011/04/webrtc/wiki/July_18_2023#WebRTC_WG_Virtual_Interim
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

W3C Code of Conduct
● This meeting operates under W3C Code of Ethics and

Professional Conduct

● We're all passionate about improving WebRTC and the
Web, but let's all keep the conversations cordial and
professional

5

https://www.w3.org/Consortium/cepc/
https://www.w3.org/Consortium/cepc/

Virtual Interim Meeting Tips
This session is (still) being recorded

● Click to get into the speaker queue.
● Click to get out of the speaker queue.
● Please wait for microphone access to be granted before

speaking.
● If you jump the speaker queue, you will be muted.
● Please use headphones when speaking to avoid echo.
● Please state your full name before speaking.
● Poll mechanism may be used to gauge the “sense of the

room”.

6

Understanding Document Status
● Hosting within the W3C repo does not imply adoption by the

WG.
○ WG adoption requires a Call for Adoption (CfA) on the

mailing list.
● Editor’s drafts do not represent WG consensus.

○ WG drafts do imply consensus, once they’re confirmed
by a Call for Consensus (CfC) on the mailing list.

○ Possible to merge PRs that may lack consensus, if a
note is attached indicating controversy.

7

Issues for Discussion Today
● 08:10 - 08:45 AM WebRTC Extended Use Cases (Bernard, Sun & Tim)
● 08:45 - 09:05 AM setMetadata (Palak Agarwal)
● 09:05 - 09:20 AM Encoded Transform (Youenn)
● 09:20 - 09:35 AM Ice Controller API (Sameer Vijakar)
● 09:35 - 09:50 AM deviceId in permissions.query (Jan-Ivar)
● 09:50 - 10:00 AM Wrapup and Next Steps (Chairs)

Time control:
● A warning will be given 2 minutes before time is up.
● Once time has elapsed we will move on to the next item.

8

WebRTC Extended Use Cases
(Bernard, Sun & Tim)
Start Time: 08:10 AM
End Time: 08:45 AM

9

Proposals from the May Meeting
● Rename it. Proposal: “WebRTC Extended Use Cases”. Done.

● Focus on things that can only/best be done by WebRTC (p2p etc)
● Remove use cases that are now met by other standards
● Include use cases that have no requirements but extend RFC 7478
● Remove use cases that don’t get consensus within a few months
● Remove requirements that don’t get consensus within a few months
● Remove use cases that don’t add new requirements
● Proposed API changes should include changes to the use-case doc
● Define the relationship between this doc and explainers
● Broaden the input somehow - perhaps via webrtc.nu ?

10

Status of Section 3.2: Low Latency Streaming
● CFC concluded on January 16, 2023: Summary

○ 6 responses received, 5 in support, 1 no opinion
● Section 3.2: Low Latency Streaming

○ Open Issue: 103 (relates to requirements N37, N38, N39)
○ Section 3.2.1: Game Streaming

■ Open Issue: 94 (game pad input)
○ Section 3.2.2: Low Latency Broadcast with Fanout

11

https://lists.w3.org/Archives/Public/public-webrtc/2023Jan/0062.html
https://www.w3.org/TR/webrtc-nv-use-cases/#low-latency-streaming
https://github.com/w3c/webrtc-nv-use-cases/issues/103
https://www.w3.org/TR/webrtc-nv-use-cases/#game-streaming
https://github.com/w3c/webrtc-nv-use-cases/issues/94
https://www.w3.org/TR/webrtc-nv-use-cases/#auction

Section 3.2.1: Game Streaming

12

Section 3.2.2: Low latency broadcast w/fanout

13

For Discussion Today

● Issues
○ Issue 94: Section 3.2.1: Improvements for Game pad input
○ Issue 103: Section 3.2: Feedback related to WebRTC-NV Low

Latency Streaming Use Case
● PRs

○ PR 116: Remove specific hardware requirement (GPU) (Bernard)
○ PR 117: Section 3.2.1: Update Requirement N37 (Bernard)
○ PR 120: Section 3.2.2: Add Requirements N13 and N16 (Bernard)
○ PR 121: Section 3.2.1: Clarify meaning of “low latency” (Bernard)
○ PR 119: Section 3.2: Streaming should not require user prompts

without not sending media. (Sun)
○ PR 118: Section 3.2.1: Clarify game streaming requirements (Sun

& Bhavani) 14

https://github.com/w3c/webrtc-nv-use-cases/issues/94
https://github.com/w3c/webrtc-nv-use-cases/issues/103
https://github.com/w3c/webrtc-nv-use-cases/pull/116
https://github.com/w3c/webrtc-nv-use-cases/pull/117
https://github.com/w3c/webrtc-nv-use-cases/pull/120
https://github.com/w3c/webrtc-nv-use-cases/pull/121
https://github.com/w3c/webrtc-nv-use-cases/pull/119
https://github.com/w3c/webrtc-nv-use-cases/pull/118

Issue 94: Improvements for game pad input (Section 3.2.1)

15

● Existing Issues filed and PRs submitted relating to game pad input:
○ Issue 4: Should fire events instead of using passive model
○ PR 152: Add gamepad input events

● Status of incubation/development efforts:
○ Chrome status: Gamepad button and axis events
○ Documentation (03 August 2021)
○ Chromium tracking issue (last entry 20 August 2021):

https://bugs.chromium.org/p/chromium/issues/detail?id=856290
● Questions

○ Are implementation efforts stalled? Any chance of revival?
○ Any relationship to work in the scope of the WEBRTC WG?
○ Is there a reason to add a requirement to Section 3.2.1?
○ Is there a useful editorial change to make (e.g. link to Issues/PRs)?
○ Or should we close the issue?

https://github.com/w3c/webrtc-nv-use-cases/issues/94
https://github.com/w3c/gamepad/issues/4
https://github.com/w3c/gamepad/pull/152
https://chromestatus.com/feature/5989275208253440
https://docs.google.com/document/d/1rnQ1gU0iwPXbO7OvKS6KO9gyfpSdSQvKhK9_OkzUuKE/edit#heading=h.5ugemo7p04z9
https://bugs.chromium.org/p/chromium/issues/detail?id=856290

Issue #103: Feedback related to WebRTC-NV Low Latency Streaming Use Case

16

https://github.com/w3c/webrtc-nv-use-cases/issues/103

Issue #103: Statement of Principles

17

● Requirements should be specific and actionable
○ Specific: It should be possible to determine whether the requirement is met

■ Example: “Low latency” should be defined.
○ Actionable: It should be possible to develop API proposals to address the

requirements.
■ Example: Does requirement N39 require new APIs?
■ Performance requirements may not be if they can be met by software

implementation improvements or better hardware, without API changes.
● It should be possible to determine whether a requirement is met

○ Required by the W3C process!
○ Is the requirement enabled by a specification or a proposed PR?

■ Example: Requirement N38 is met by jitterBufferTarget. How do we indicate that?
○ Has an Issue been filed, which if resolved, would enable the requirement to be met?

■ Example: Issue 146: Exposing decode errors / SW fallback as an event
○ Is the specification or PR testable? Is there a test?

https://github.com/w3c/webrtc-nv-use-cases/issues/103
https://github.com/w3c/webrtc-extensions/issues/146

What is the relationship of a Use Case To…
● Issues (what specific problems are being referred to)

○ Should a use case link to related Issues?
■ Example: Should Requirement N37 (Ability to support high

resolution/framerate) link to related issues (e.g. hardware acceleration)?
■ Advantage: Links requirements to specific Issues whose resolution can be

tracked
● API Proposals (what API proposals relate to the problems)

○ Should a use case link to API proposals?
■ Clarifies whether a use case has API proposals
■ Links use case to an API proposal whose progress can be tracked

● Explainers (How the proposals relate to the use cases)
○ Should explainers link to use cases?

■ Clarifies whether an API proposal is solving a use case

18

What do we do with aspirations?
● NV was a place to put hopes and dreams
● Many of them have been realized
● (although not always in the way that NV described)

Where should we put hopes and dreams ?
Are they out of scope for a standards group?

19

PR 116: Remove specific hardware reference (GPU)

20

● Rationale
○ Efficient media manipulation may involve multiple mechanisms, including

hardware acceleration (GPU, NPU, etc.), WASM SIMD, conversions without
copies, etc.

○ Focus on GPU is too narrow.

https://github.com/w3c/webrtc-nv-use-cases/pull/116

PR 117: Update Requirement N37

21

● Rationale
○ Existing requirement N37 is not actionable.
○ Need to identify the Issue and required API changes. See:

■ Issue 146: Exposing decode errors / SW fallback as an event

https://github.com/w3c/webrtc-nv-use-cases/pull/117
https://github.com/w3c/webrtc-extensions/issues/146

PR 120: Section 3.2.2: Add Requirements N13 and N16 (Bernard)

22

● Rationale
○ Fanout implementations currently using data channel on the main thread

have encountered latency issues. Solutions:
■ Support for data channel in workers
■ Support for partial reliability.

https://github.com/w3c/webrtc-nv-use-cases/pull/120

PR 121: Section 3.2.2: Clarify meaning of “low latency” (Bernard)

23

● Rationale
○ There are some uses (e.g. webinars, company meetings) that

require “low latency” (glass-glass latency < 1 second).
■ Existing implementations often use data channel for fanout. These can

achieve acceptable latency with requirements N13 and N16.
○ There are other uses (e.g. auctions, betting) where “ultra low

latency” (glass-glass latency < 500ms) is required.
■ WebRTC is popular for these “ultra low latency” uses (e.g. WHIP/WHEP)
■ For these uses, data channel fanout may add too much latency even

with N13 and N16.
● Requirement N39 covers RTP fanout (which uses low latency

congestion control such as gcc, rather than the NewReno in data
channel)

● Requirement N43 proposed (see next presentation)

https://github.com/w3c/webrtc-nv-use-cases/pull/120

24

PR 121: Section 3.2.2: Clarify meaning of “low latency” (cont’d)

https://github.com/w3c/webrtc-nv-use-cases/pull/120

PR 119: Section 3.2: Streaming should not require user prompts without
sending media.

25

● Rationale
○ Section 3.2.1: Gamers will be surprised by (and suspicious of)

permission prompts in games that do not use audio/video input (e.g.
to support audio/video chat).

○ Section 3.2.2: Conventional streaming does not require audio/video
input permissions. Why should low latency streaming be different?

https://github.com/w3c/webrtc-nv-use-cases/pull/119

PR 118: Clarify Game Streaming requirements (Section 3.2)
● Rationale: Cloud Game Characteristics

○ A highly interactive application that depends on continuous visual feedback to
user inputs.

○ The cloud gaming latency KPI would track Click to Pixel latency - time elapsed
between user input to when the game response is available at the user display
(where as non-interactive applications may track G2G latency as the KPI).

○ Requires low and consistent latency. Desirable C2P latency range is typically 30 -
150ms. A latency higher than 170 ms makes high precision games unplayable.

○ Loss of video is highly undesirable. Garbled or corrupt video with fast recovery
may be preferable in comparison to a video freeze.

○ Motion complexity can be high during active gameplay scenes.
○ Consistent latency is critical for player adaptability. Varying latency requires

players to adapt continuously which can be frustrating and break gameplay.
○ The combination of high complexity, ultra low latency and fast recovery will require

additional adaptive streaming and recovery techniques.

26

https://github.com/w3c/webrtc-nv-use-cases/pull/118

PR 118: Clarify Game Streaming requirements (Section 3.2)

27

ID Requirement Description Benefits to Cloud Gaming Is it Cloud Gaming
Specific?

N48
(New)

Recovery using
non-key frames

WebRTC must support a mode in which it
allows video decoding to continue even after
a frame loss without waiting for a key frame
This enables addition of recovery methods
such as using frames containing intra coded
macroblocks and coding units.

Players can continue to game with partially
intelligible video.
Fast recovery from losses on the network

Can be used by any
application where video
corruption is preferred to
video freezes

N49
(New)

Loss of encoder
-decoder
synchronicity
notification

The WebRTC connection should generate
signals indicating to encoder about loss of
encoder-decoder synchronicity (DPB buffers)
and sequence of the frame loss.(RFC 4585
section-6.3.3: Reference Picture Selection
Indication)

Fast recovery from losses on network.
Helps application to choose right recovery
method in lossy network.

Can be used by any
application where video
corruption is preferred to
video freezes

N50
(New)

Configurable
RTCP
transmission
interval

Application must be able to configure RTCP
feedback transmission interval (Ex:
Transport-wide RTCP Feedback Message)

Gaming is sensitive to congestion and
packet loss resulting in higher latency.
Consistent RTCP feedback helps
application to adapt video quality to
varying network (BWE and packet loss).

Can be used by any
application where
latency buildup is not
acceptable.

N51
(New)

Improve
accuracy of
Jitter buffer
control

Extend adaptation of the jitter buffer to
account for jitter in the pipeline upto the
frame render stage

Increases accuracy of jitter buffer
adaptation and helps maintain consistent
latency

Helps all low latency
applications, but is
necessary for Cloud
gaming

https://github.com/w3c/webrtc-nv-use-cases/pull/118

Discussion (End Time: 08:45)
●

28

setMetadata() (Palak Agarwal)
Start Time: 08:45 AM
End Time: 09:05 AM

29

setMetadata() for
redundant relay PCs

30

Palak Agarwal, Google

Existing use case - Section 3.2.2

31

https://www.w3.org/TR/webrtc-nv-use-cases/#auction

Example scenario

SFU/Server

Encoder

Encoder

Encoder

Encoder

SFU/Server

P1

P5

Pn

Receiving
Peer

Receiving
Peer

Receiving
Peer Receiving

Peer

Receiving
Peer

Receiving
Peer

Receiving
Peer

Receiving
Peer

Problem: Peer fails unexpectedly

33

● Poses a streaming issue in Relay P2Ps. Causes disruption,
non-continuous playout

● Need for handling peer failures seamlessly (cannot wait for a keyframe)

Solution: Use redundant communication channels (i.e., multiple PCs)

Changes frameId,
RTPtimestamp, etc. of
encoded frame

Solution: Add redundant PCs

SFU/Server (2)

Encoder

Encoder

Encoder

Encoder

SFU/Server (1)

P1

P5

Pn

Receiving
Peer

Receiving
Peer (a)

Receiving
Peer Receiving

Peer

Receiving
Peer

Receiving
Peer

Receiving
Peer (b)

Receiving
Peer (c)

Problem: Switch between frames from PCs

● Even with redundant channels, there will be interruptions/glitches while
switching to another PC as the incoming encoded frames are not identical

Proposed solution: Update the metadata of frames from either PC such
that frames with the same payload become interchangeable

35

Receiving Peer

Solution: setMetadata() for encoded frames
Changes frameId,
RTPtimestamp, etc.

Encoded
Transform

getReader.read()

RecvPC1.receiver JS object that
setsMetadata
on the two
incoming
frames to make
them identical
and dedupes
them into a
single frame

Render to
local video
element or
canvas

Send
Encoded
frame to
next peer

SFU/Peer/
Server

RelayPC.sende
r.getWriter()

PlayoutPC.recei
ver.getWriter()

Encoded Frame

getReader.re
ad()

write(fra
me)

write(frame)RecvPC2.receiver

SFU/Peer/
Server

Encoded Frame

Sample code
// Let recvPc1, recvPc2 be the receiving PCs.

recvPc{1|2}.ontrack = evt => {

 transferFrames(evt.receiver.createEncodedStreams().readable.getReader());

};

// Let relayPc be the PC used to relay frames to the next peer.

relayPcWriter = relayPc.sender.createEncodedStreams().writable.getWriter();

async function transferFrames(reader) {

 while (true) {

 const {frame, done} = await reader.read();

 if (done) return;

 frame.timestamp = getUnifiedTimestamp(frame);

 frame.setMetadata(getUnifiedMetadata(frame));

 if(!isDuplicate(frame)) {

 relayPcWriter.write(frame);

 }

 }

} 37

Proposed requirement change

38

Proposed API change
interface RTCEncodedVideoFrame {
 readonly attribute RTCEncodedVideoFrameType type;
 readonly attribute unsigned long timestamp; // RTP timestamp
 attribute ArrayBuffer data;
 RTCEncodedVideoFrameMetadata getMetadata();
 void setMetadata(RTCEncodedVideoFrameMetadata metadata);
};

For this application, we need to change frameId and dependencies.
#162 outlines other possible metadata modifications.

39

https://github.com/w3c/webrtc-encoded-transform/issues/162

Proposed API change
interface RTCEncodedAudioFrame {
 readonly attribute unsigned long timestamp; // RTP timestamp
 attribute ArrayBuffer data;
 RTCEncodedAudioFrameMetadata getMetadata();
};

40

Discussion (End Time: 09:05)
●

41

Encoded Transform (Youenn)
Start Time: 09:05 AM
End Time: 09:20 AM

42

● WebRTC Encoded Transform pipeline

Issue 188: Clarify why backpressure should be disabled

43

Network
(UA)

Transform
(JS)

Encoder
(UA)

Readable
Stream

Writable
Stream

Decoder
(UA)

Transform
(JS)

Network
(UA)

Readable
Stream

Writable
Stream

https://github.com/w3c/webrtc-encoded-transform/issues/188

● Is backpressure observable to the JS transform?

Issue 188: Clarify why backpressure should be disabled

44

onrtctransform = event => {

 process(event.transformer.readable.getReader()

 , event.transformer.writable.getWriter());

}

async function process(reader, writer)

{

 // read chunk

 const chunk = await reader.read();

 if (chunk.done)

 return;

 // write chunk

 writer.write(chunk.value);

 // wait for writer to be ready

 await writer.ready;

 // process next chunk

 process(reader, writer);

}

Promise resolution based on backpressure

https://github.com/w3c/webrtc-encoded-transform/issues/188

● What if transform is writing too much data
○ Network will not be able to sustain, packets will be dropped
○ UA will be notified of this, at some point
○ UA will instruct encoder to reduce throughput, at some point

Issue 188: Clarify why backpressure should be disabled

45

Network
(UA)

Transform
(JS)

Encoder
(UA)

Readable
Stream

Writable
Stream

UA adaptation mechanism

https://github.com/w3c/webrtc-encoded-transform/issues/188

46

● What if transform is too slow
○ UA knows this without having to rely on streams backpressure
○ UA will reduce frame rate by dropping frames prior encoder

Issue 188: Clarify why backpressure should be disabled

46

Network
(UA)

Transform
(JS)

Encoder
(UA)

Readable
Stream

Writable
Stream

UA adaptation mechanism

Source
adaptation

(UA)

https://github.com/w3c/webrtc-encoded-transform/issues/188

● Key takeaway: backpressure is
○ Not needed here as UA knows both ends of the transform
○ A great mechanism in some contexts

■ Reliable networking like for file exchange
○ Not very useful in lossy contexts

■ Trading reliability for latency, adaptation will happen outside of
backpressure

● Fortunately, WhatWG streams spec acknowledges this

● Proposal: update specification to use +∞ and mention rationale as a
design note

Issue 188: Clarify why backpressure should be disabled

47

https://github.com/w3c/webrtc-encoded-transform/issues/188

Discussion (End Time: 09:20)
●

48

Ice Controller API (Sameer Vijaykar)
Start Time: 09:20 AM
End Time: 09:35 AM

49

● ICE RFC 8445 (and subsequent updates - RFC 8838 Trickle ICE and RFC
8863 ICE PAC) are strict wrt nomination.

● Changing the nominated candidate pair - requires ICE restart
Section 8.1.1: Once the controlling agent has successfully nominated a candidate pair (Section
7.2.5.3.4), the agent MUST NOT nominate another pair for same component of the data stream within
the ICE session. Doing so requires an ICE restart.

● Continue connectivity checks on non-nominated pairs - maybe OK?
Section 8.3.1: Once a checklist has reached the Completed state, the agent SHOULD wait an additional
three seconds, and then it can cease responding to checks or generating triggered checks on all local
candidates other than the ones that became selected candidates.

● Rejecting a nomination on the controlling side - perhaps OK
Section 7.3.1.5: If the controlled agent does not accept the request from the controlling agent, the
controlled agent MUST reject the nomination request with an appropriate error code response.

ICE candidate pair selection and nomination - RFC 8445

50

https://datatracker.ietf.org/doc/html/rfc8445
https://datatracker.ietf.org/doc/html/rfc8838
https://datatracker.ietf.org/doc/html/rfc8863
https://datatracker.ietf.org/doc/html/rfc8863
https://datatracker.ietf.org/doc/html/rfc8445#section-8.1.1
https://datatracker.ietf.org/doc/html/rfc8445#section-8.3.1
https://datatracker.ietf.org/doc/html/rfc8445#section-7.3.1.5
https://datatracker.ietf.org/doc/html/rfc8445

● So how to change selected pair when directed by the application?

● Expensive and slow to change with an ICE restart, i.e.
○ follow same steps as an ICE restart, fire negotiationneeded
○ retain candidates from previous ICE session
○ nominate the application-indicated pair if checks succeed

● Alternative - selection without nomination - permitted by RFC 8445
○ Section 8.1.1: The criteria for stopping the connectivity checks and for picking a pair for nomination

are outside the scope of this specification … data can always be sent on any valid pair, without
nomination.

○ Controlling side simply starts sending data on a different valid pair.
○ STUN checks may be sent indefinitely for keep-alives, upper limit suggested but not mandated.
○ Prevent removal of candidates with cancelable onicecandidatepairremove event.
○ Prevent nomination on controlling side with cancelable selectedcandidatepairchange event.

ICE candidate pair selection and nomination - RFC 8445

51

https://datatracker.ietf.org/doc/html/rfc8445#section-8.1.1
https://datatracker.ietf.org/doc/html/rfc8445

Discussion (End Time: 09:35)
●

52

deviceId in permissions.query (Jan-Ivar)
Start Time: 09:35 AM
End Time: 09:50 AM

53

Our Permissions Integration adds
deviceId for "camera", "microphone"
& "speaker-selection" permissions.

The idea was for JS to query permissions of individual media devices, which is only
useful on browsers that implement per-device permissions, currently Firefox. Mozilla,
however, won't be implementing the deviceId part, over fingerprinting concerns that
would extend beyond those of other browsers.

There are currently zero implementations, one (manual setSinkId) WPT, and AFAIK no
implementations planned.

I propose we remove this API (the deviceId member of permissions.query({name,
deviceId})) from mediacapture-main and mediacapture-output.

Issue 965: deviceId in permissions.query() is
unimplemented fingerprinting surface (Jan-Ivar)

54

https://w3c.github.io/mediacapture-main/#permissions-integration
https://bugzilla.mozilla.org/show_bug.cgi?id=1815362#c1
https://github.com/web-platform-tests/wpt/blob/cad8b40a3edd96f8ec4e7bc9b0182b6396735192/audio-output/setSinkId-manual.https.html#L40
https://w3c.github.io/mediacapture-main/#permissions-integration
https://w3c.github.io/mediacapture-output/#permissions-integration
https://github.com/w3c/mediacapture-main/issues/965

1. Fingerprinting surface too much: 1 bit per device in users’ systems;
and defeats device exposure mitigations in enumerateDevices()

2. Existing API sufficient to negotiate consent for a camera and microphone:

Firefox (the only browser to maintain temporal per-device permissions) will
prefer returning already granted devices instead of prompting when
possible, e.g. with getUserMedia({video: true, audio: true}).

3. Feature at risk / No web compat

Issue 965: deviceId in permissions.query() is
unimplemented fingerprinting surface (Jan-Ivar)

55

https://github.com/w3c/mediacapture-main/issues/965

Discussion (End Time: 09:50)
●

56

Wrapup and Next Steps
Start Time: 09:50 AM
End Time: 10:00 AM

57

Thank you

Special thanks to:

WG Participants, Editors & Chairs

58

