
Modern Web Vector Graphics
fserb@chromium.org - July 2023

This document presents an exploration of the modern use cases for web
vector graphics, the current solutions and their limitations, and potential
future improvements. It's clear that as web design evolves, so too must the
technologies that facilitate animations, interactivity, and responsiveness. The
landscape of vector graphics is complex and demands solutions that can
bridge the gap between developer desires, performance expectations, and
user experiences.

Open Questions

Should we continue to enhance SVG or move towards a new vector
format?With SVG's limitations to the new use cases and the potential for a
more modern vector format, should we focus on enhancing SVG or devise a
novel vector format altogether?

What are the constraints that we should focus on? Supporting better
integration with CSS and allowing animations? Should we try to support
non-web rendering? Especially if we consider text, is there a possibility of
designing a format that doesn't depend on a web browser to render? Should
this be a goal?

What is the best approach for text rendering in a new vector format?
Given the complexity that comes with supporting text rendering, especially
when considering internationalization and accessibility, it's vital to decide
whether a new vector format should incorporate this feature.

mailto:fserb@chromium.org


Problem Space and Use Cases

Responsive Vector Graphics

Responsive design became the expected baseline of modern UI accessible
design. Vector graphics always played a role in this as "size-independent"
graphics (for example, on icons). In spite of some solutions for level-of-detail
responsiveness, there has never been support for truly responsive vector
graphics that adapt in dynamic ways.

Animated Vector Graphics

Vector graphics have been heavily utilized in creating smooth, complex
graphics for the web. Currently, their usage in animations is mostly
intermediated by runtimes, but they could potentially offer more flexibility
and quality than traditional raster-based animations.



Interactive UI Elements

Interactive UI elements, such as buttons, icons, infographics, and data
visualization components, are increasingly made using animations. Motion is
considered an important part of UX. Being able to do them through vector
animations provide scalability, resolution-independence, and the potential
for interactivity and animation.

Parametric Shapes

Parametric shapes are vector graphics defined based on a set of parameters
or equations. This makes them highly flexible and customizable, allowing for
dynamic and responsive designs. They allow people to have access to
easy-to-describe (like the curveness in squircles, described below) but hard
to build shapes. It's an emerging design trend and we should make it easier
for people to compose.



Current solutions & limitations

There's currently a set of tools and practices to address some of those use
cases.

There are animation runtimes, like Greensock (GSAP), Lottie, and Rive. In the
case of GSAP, it provides a JS library to build sequence or scroll based
animations. Lottie and Rive provide more integrated solutions from
animation tools that are exported as animations controlled by a JS runtime.
Those can be very powerful and their end-to-end aspect can be very
interesting, but they do suffer from potential performance issues and poor
integration with the rest of the web platform.

The runtime solutions are close to the experience designers want, but they
suffer from some run-time limitations that end up affecting end users.
Animations are usually very performance demanding, requiring Canvas JS
rendering or complex DOM manipulations. There's a fundamental disconnect
here: developers want those experiences that are mostly declarative in
nature ("animate this object" or "place this shape here"), and have to rely on

https://greensock.com/
https://airbnb.design/lottie/
https://rive.app/


imperative runtimes to support them, because the web doesn't provide good
declarative primitives for them.

CSS and SVG have some declarative animation support that is able to
address some of the same use cases, and because they are declarative they
are often more performant. The complex cases, however, can be brittle and
difficult to achieve.

There's a consistent movement towards more responsive and animated UI
elements. Even simple things like checkboxes are expected to behave in
more interesting ways than just state switching, with animations and motions
being part of the overall UX experience. The current alternatives for it are
either very complex and hack-y (using pseudo-elements to design a tick
mark, or dot spacing for line animation, for example), or demand completely
custom elements. Both of those solutions have downsides in terms of
accessibility, performance and difficulty.

For shapes, there are external builders that allow people to generate one-off
SVGs of the shapes they want, like Blobmaker or Squircle generator. Those
are limited and not very flexible.

What the future could look like?

The current set of solutions are an indication that developers care about this
space and, in spite of current limitations, are really trying to push Web UX
design in those directions.

Usage of vector animations both as UI elements and overall graphics
components should become 1st class citizens on the web, as easy as adding
raster images to a page. Vector images should be fully integrated with CSS.
Animations should be controllable via both declarative and imperative APIs.

https://developer.chrome.com/blog/hardware-accelerated-animations/
https://codepen.io/uiforfree/pen/eYQZypy
https://www.blobmaker.app/
https://copyicon.com/generator/svg-squircle


Vector images should be parameterizable both in time/scroll (for
animations), box dimensions (for responsiveness), and other parameters (for
parametric shapes). Those parameters should be able to not only change
image properties (like we currently have on CSS and SVG), but also change
path control points and other animation parameters (such as squircle
roundness).

Allowing vector formats to be declarative opens up a world of potential
optimizations and performance improvements for UAs that would be able to
choose how to handle performance tradeoffs and improve smoothness and
remove jank. It also drastically reduces the barrier to use those features.

Challenges for vector image formats

There have been several attempts to design new vector image formats
(like Flutter vector, IconVG) or animation specific ones (like Lottie, or
Rive). They want to try to provide a cross-platform (including non-web
uses) experience; they want a simple format that can be bridged
directly to modern GPUs in a performant way; and sometimes they
want to support features like full vector animation.

They usually try to stay away from SVG, mostly due to the
implementation complexity (not only Text and ForeignObjects, but even
style, and filters). And most of them tend to focus on implementation
details like binary formats.

The one common trend among them is that they end up having to
avoid text rendering, as the added complexity seems not solvable in a
true cross-platform way. It seems that if you want to have text

https://flutter.dev/go/vector-graphics
https://github.com/google/iconvg/blob/main/spec/iconvg-spec.md


rendering (i18n, accessibility, native support) at the level people have
grown to expect from the web, you need a web browser.

In the end, it would be possible to have a simpler cross-platform
solution for vector graphics, but it would imply dropping text. One
could argue that in some situations that would be useful (an icon vector
format, for example), while in others less so (a diagram vector format).

If you must have text rendering, it is not clear that it's possible to design
a "simple" format that doesn't depend on a chunk of the browser
technology and would end up in the same design space as SVG.

That said, staying in the SVG space, while beneficial from lots of
aspects, still has some potential shortcomings. Namely, to support the
use cases listed above, we would need to consider some additions that
would allow 1st class path support (allowing parametrization of control
points) on SVG.


