
Media Capabilities API
Issues and PRs
Chris Needham, W3C Media WG
Last Updated: 12 December 2023

PR #78 / Issue #79 Define the meaning for CBR
and VBR more precisely

Proposed change:

The bitrate member represents the[-average-] bitrate of the video track given in units of bits per
second. In the case of a video stream encoded at a constant bit rate (CBR) this [-value should be
accurate over a short term window.-]{+shall represent the average bitrate of the video track.+} For the
case of variable bit rate (VBR) encoding, this value {+shall represent the maximum bitrate of the
stream. In either case, this value+} should be usable to allocate any necessary buffering and
throughput capability to provide for the un-interrupted decoding of the video stream over the long-term
based on the indicated contentType.

https://github.com/w3c/media-capabilities/pull/78/files
https://github.com/w3c/media-capabilities/issues/79

PR #105 Use "parse a MIME type" to check
validity

● Related issue: #69 Use mimesniff's "parse a MIME type" to parse the contentType member
● Requirements for authors: MIME type should indicate a single audio or video codec
● Simplify algorithm language, e.g., “substeps”, and “abort these steps” are unnecessary
● Change wording from “imply a single media codec”
● Need another word/phrase for “valid media MIME type”

○ See mimesniff definition of “valid MIME type string”
● Needs tests - see WPT

https://github.com/w3c/media-capabilities/pull/105/
https://github.com/w3c/media-capabilities/issues/69
https://mimesniff.spec.whatwg.org/#mime-type-writing
https://github.com/web-platform-tests/wpt/blob/master/media-capabilities/decodingInfo.any.js

PR #186 Add a new webrtcCodec parameter to
MediaCapabilitiesInfo

● Related issue: #185 Retrieving RTCRtpCodecCapability from MediaCapabilities when queried for
webrtc

● Adds webrtc.audio and webrtc.video objects to MediaCapabilitiesInfo
● Discussion continued since PR was last updated

○ Add steps to clarify how construct the RTCRtpCodecCapability
○ Should clockRate be required or optional?
○ Do we want defaulting rules? If I do not provide channel, or I just provide 'video/H264' or

just 'video/H264'+profile-level-id, can I still get a valid capability dictionary?
● Needs follow up from Youenn, Bernard, Harald
● Needs tests - see WPT

https://github.com/w3c/media-capabilities/pull/186
https://github.com/w3c/media-capabilities/issues/185
https://github.com/w3c/media-capabilities/issues/185#issuecomment-1090866353
https://github.com/web-platform-tests/wpt/blob/master/media-capabilities/decodingInfo.webrtc.html

PR #165 Define codecSwitchingSupported

● Related issue: #102 Discuss transition() ergonomics
● Introduces the idea of a “Decoding Pipeline”
● Describes capabilities for MSE SourceBuffer changeType()
● Adds codecSwitchingSupported to MediaCapabilitiesDecodingInfo

○ Alternative to previously suggested API shapes:
■ mediaCapabilitiesInfo.transition()
■ mediaCapabilities.decodingTransitionInfo()

● Agreed that smooth flag in MediaCapabilitiesDecoding info does not describe the
transition itself. It describes the minimum performance of playback for the given configurations

● Open questions:
○ Reporting seamless transition capability, e.g., timing tolerance
○ How do EME pipelines affect transition capability? Does the API adapt to what is currently

in use or playing?

https://github.com/w3c/media-capabilities/pull/165
https://github.com/w3c/media-capabilities/issues/102

#102 Discuss transition() ergonomics

Proposal 1: Add MediaCapabilitiesDecodingInfo.transition() method

// Query an initial decoding configuration
const info = await navigator.mediaCapabilities.decodingInfo(...)

if (info.supported) {
 // Query a second decoding config, result shows
 // if the combination is supported, smooth, power efficient
 const transition = await info.transition(...);

 console.log(transition.supported, transition.smooth, transition.powerEfficient);
}

https://github.com/w3c/media-capabilities/issues/102

#102 Discuss transition() ergonomics

Proposal 2: Add decodingTransitionInfo() method

const config1 = { ... };
const config2 = { ... };

// Query an initial decoding configuration
const info = await navigator.mediaCapabilities.decodingInfo(config1);

// Query a second decoding config, result shows
// if the combination is supported, smooth, power efficient
const transition = await.navigator.decodingTransitionInfo(config1, config2);

console.log(transition.supported, transition.smooth, transition.powerEfficient);

https://github.com/w3c/media-capabilities/issues/102

#102 Discuss transition() ergonomics

Proposal 3 (PR #165): Add codec_transitions_supported flag to
MediaCapabilitiesDecodingInfo

const config1 = { ... };
const config2 = { ... };

// Query decoding configurations
const info1 = await navigator.mediaCapabilities.decodingInfo(config1);
const info2 = await navigator.mediaCapabilities.decodingInfo(config2);

// Check both are supported, including transitions
return (info1.supported && info2.supported) &&
 (info1.codecSwitchingSupported && info2.codecSwitchingSupported);

https://github.com/w3c/media-capabilities/issues/102

PR #107 Mark keySystemAccess as default to
null and optional and robustness properties as no
longer defaulting

● This PR is about removing defaults from

DOMString audioRobustness = "";

DOMString videoRobustness = "";

and making MediaCapabilitiesDecodingInfo keySystemAccess optional, defaulting to null.

● Looks to be superseded by current spec text for MediaCapabilitiesKeySystemConfiguration and
valid MediaConfiguration - propose closing

https://github.com/w3c/media-capabilities/pull/107
https://w3c.github.io/media-capabilities/#mediacapabilitieskeysystemconfiguration
https://w3c.github.io/media-capabilities/#valid-mediaconfiguration

#209 Align exposing scalabilityMode with the
WebRTC "hardware capabilities" check

● Problem #1: WebRTC-SVC uses Media Capabilities API for discovery
○ Indicates if a configuration is “supported” “powerEfficient” or “smooth”
○ Media Capabilities API not limited to capture context

● Problem #2: SVC rarely supported in hardware
○ Today, few devices support “powerEfficient” SVC
○ Simulcast often preferred to SVC to save power
○ Result: scalabilityMode support of little value for hw fingerprinting

● Problem #3: WebRTC-SVC exposes less information than Media Capabilities
○ Calling RTCRtpSender.setParameters() or addTransceiver() with

RTCRtpEncodingParameters.codec exposes whether configuration is “supported”, but not
“powerEfficient” or “smooth”

● Proposal: (From November 21 WebRTC WG meeting) Limit exposure of power efficient / smooth for
scalabilityMode to capture context only ?

● See also issue #176 General approach to capability negotiation

https://github.com/w3c/media-capabilities/issues/209
https://www.w3.org/2023/11/21-webrtc-minutes.html#t06

#176 General approach to capability negotiation

● PING question: Why expose device capabilities to the app for purposes of negotiation? Couldn't
we instead have sites expose available media formats and have browsers (perhaps in a way not
exposed the application) pick the one they like best?

● pes10k: Spec needs normative protections against fingerprinting risk
● See Security and Privacy Questionnaire

https://github.com/w3c/media-capabilities/issues/176
https://github.com/w3c/media-capabilities/blob/main/security-privacy-questionnaire.md

#203 Browser interop issues

● MediaCapabilities.encodingInfo() type “webrtc” vs “transmission”. Chrome and Safari use
“webrtc”, Firefox uses “transmission”

● Safari has special behaviour to show supported: true and add a
supportedConfiguration object to the result. scalabilityMode parameter is ignored, see
webrtc/samples#1596. Should we spec supportedConfiguration?

● Chrome >= 101 reports supported: true for type “webrtc” and scalabilityMode
parameter. But SVC is only supported in Chrome >= 111, see webrtc/samples#1597. This is a
browser bug where the MediaCapabilities would report that the encoders are technically able to
do SVC but the WebRTC encoders are not able to be configured for SVC.

https://github.com/w3c/media-capabilities/issues/203
https://github.com/webrtc/samples/issues/1596
https://github.com/webrtc/samples/issues/1597

#202 What is the interaction of media capabilities
with WebCodecs?

● WebCodecs has isConfigSupported()
● If Media Capabilities indicates that a config will be smooth for WebRTC, does that necessarily

imply that it will be smooth for WebCodecs?

https://github.com/w3c/media-capabilities/issues/202

#197 Provide an example using
MediaCapabilitiesKeySystemConfiguration

● Adding an example is useful

https://github.com/w3c/media-capabilities/issues/197

#141 Conformance against enumerated
assertions in VideoConfiguration

● Reference conformance points alongside each of the technical specs involved in
VideoConfiguration properties (e.g., HdrMetadataType, ColorGamut and TransferFunction)

● For HDR metadata types defined by SMPTE-ST-2086, SMPTE-ST-20894, even if a device can
interpret the metadata, the screen may not actually display it. Similarly, it may accept BT.2020
color data and then map everything to 709.

○ This should be solved by CSS media queries

https://github.com/w3c/media-capabilities/issues/141

#136 DolbyVision HDR metadata

● Discussed at TPAC 2023. Current proposal is to add a “dvmd” identifier to HdrMetadataType, and
move this to a registry.

● Has this come up in other SDOs, e.g., MPEG? Anything we can reference?

https://github.com/w3c/media-capabilities/issues/136

#133 Should VideoDisplayConfiguration width &
height be in CSS or device pixels

● Propose closing, as Media Capabilities doesn’t include display capabilities

● CSS issue #6891: Expose video plane pixel ratio

● Related issue: #135 hdrSupported: Screen.video or simply Screen?

https://github.com/w3c/media-capabilities/issues/133
https://github.com/w3c/csswg-drafts/issues/6891
https://github.com/w3c/media-capabilities/issues/135

#113 Multiple stream decoding

● A number of media devices support decoding more than one stream at one time:

○ Some devices may have multiple decoders with identical capabilities
○ Some devices may be able to decode one UHD stream and one HD stream at any time - i.e.

the second decoder simply doesn't support UHD ever but can be used at any time
regardless of what the first decoder is doing

○ Some devices may have dynamic capabilities, e.g., they can decode one UHD or two HDs
at the same time but not two UHDs. This may be due to the amount of available RAM, or
memory bandwidth

● Using multiple media decoders can improve client-side advertising use-cases

● Previous answer: Multiple stream is out of scope because it would be hard to give a reliable
answer. Related: issue #102 (transition API)

https://github.com/w3c/media-capabilities/issues/113

#99 Support for MPEG CMAF Supplemental Data

● CMAF Amendment 2 (now included in ISO/IEC 23000-19:2020) introduces Supplemental data
brands, indicating the presence of additional information in a track that is not required to render
playback of the track – e.g. NAL units or SEI messages. Two examples:

○ ‘ccac’ indicating that 608/708 captioning is present

○ another 4CC indicating SEI delivered dynamic HDR metadata which can be applied to an
underlying 10-bit CMAF video profile

● Media Capabilities has HdrMetadataType ("smpteSt2086", "smpteSt2094-10",
"smpteSt2094-40"). Is more needed?

● Media Capabilities does not included captioning. Should it?

https://github.com/w3c/media-capabilities/issues/99
https://www.iso.org/standard/79106.html

#98 Support for MIME Type Profiles
subparameter in order to support CMAF, etc.

● @johnsim: It would be desirable for Media Capabilities to be able to indicate support for CMAF
media profiles

● CMAF media profiles are identified by 4cc codes which are in the CMAF init segment and
characterize the content. The media profile includes bit depth, chroma subsampling, color space,
transfer functions, black level – which I believe cannot be expressed in the codecs string

● Proposed resolution from 3 Nov 2020 MEIG meeting was: if Media Capabilities allows the bit
depth, color space, transfer functions, etc, to be queried, CMAF profiles can be mapped to this in
a JS library. Are there any remaining gaps?

https://github.com/w3c/media-capabilities/issues/98
https://www.w3.org/2020/11/03-me-minutes.html

#95 Frame rate configuration

● The current spec uses framerate as a video configuration parameter. This assumes the video
has a fixed frame rate. What about variable frame rate, even if less used?

○ “The framerate member represents the framerate of the video track. The framerate is the
number of frames used in one second (frames per second)”

● Chris C: Implementers should answer as if everything is fixed-rate, and web authors should query
with whatever number they think best describes their stream (taking into account the
distribution of frame rate in the video)

● Proposal: Add a note about variable frame rates

https://github.com/w3c/media-capabilities/issues/95

#88 Dictionary pattern may be incompatible with
WebIDL

● WebIDL issue #76: Sort out when dictionaries and records should have default values

● Is there anything we need to change in Media Capabilities?

https://github.com/w3c/media-capabilities/issues/88
https://github.com/whatwg/webidl/issues/76

#73 Better define “channels” in
AudioConfiguration

● It's currently hand-wavy and inconsistent with Web Audio. We should decide whether we want to
keep the definition as including the sub (ie. .1) or if we want to stay fully consistent with Web
Audio

● Inline spec issue: The channels needs to be defined as a double (2.1, 4.1, 5.1, ...), an unsigned
short (number of channels) or as an enum value. The current definition (DOMString) is a
placeholder

○ What do current implementations do?

● Needs to be clear about whether multi-channel audio will be downmixed to stereo. Some content
providers may wish to provide their stereo audio track rather than rely on an unknown downmix

● Web Audio: unsigned long numberOfChannels

https://github.com/w3c/media-capabilities/issues/73
https://w3c.github.io/media-capabilities/#issues-index

#44 powerEfficient needs some objective
definition

● The powerEfficient attribute currently is open ended, so it would be difficult to have multiple UAs
respond similarly

● Current wording: If the UA is able to encode the media in a power efficient manner, set
powerEfficient to true. The user agent SHOULD NOT take into consideration the current power
source in order to determine the power efficiency unless the device’s power source has side
effects such as enabling different encoding/decoding modules.

● Proposed wording: Decoding is power efficient when the power draw is optimal or close to
optimal. The definition of optimal power draw from decoding is left to the UA but common
implementation strategies would be to consider hardware decode as optimal. It is NOT
RECOMMENDED to only mark as power efficient hard decoding as the power draw of
non-accelerated codecs can sometimes be very close to accelerated ones (for example, low
resolution videos).

https://github.com/w3c/media-capabilities/issues/44

#43 Need a mechanism for considering device
conditions that affect media capabilities

● Make Media Capabilities take into account device state such as:
○ EME keySystem (added in #101)
○ Battery status
○ Whether Remote Playback is intended (issue #26)
○ Others (?)

● Proposal to add a MediaConditions object to MediaConfiguration to describe such state
● Main question remaining:

○ Battery status - is powerEfficient enough?
○ Media Capabilities and Remote playback API

https://github.com/w3c/media-capabilities/issues/43
https://github.com/w3c/media-capabilities/pull/101
https://www.w3.org/TR/remote-playback/
https://github.com/w3c/media-capabilities/issues/26

#3 Deprecate isTypeSupported and canPlayType

● Does the API make promises for only HTMLMediaElement and
MediaSource, or does it also cover Web Audio decodeAudioData?

https://github.com/w3c/media-capabilities/issues/3

Developer proposals

#196 Proposal: canPlay (a local file) API

● Proposal is to add an API, where given a media file, returns whether the
browser can play it. Alternative to providing MIME type details.

https://github.com/w3c/media-capabilities/issues/196

#194 What about still images?

● Proposal is expose display capabilities: “the key capability that matters is
the display itself, which influences both video and still images”

https://github.com/w3c/media-capabilities/issues/194

