
W3C WebRTC
WG Meeting
December 12, 2023

8 AM - 10 AM

Chairs: Bernard Aboba
Harald Alvestrand
Jan-Ivar Bruaroey 1

W3C WG IPR Policy
● This group abides by the W3C Patent Policy

https://www.w3.org/Consortium/Patent-Policy/
● Only people and companies listed at

https://www.w3.org/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

2

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!
● Welcome to the second December 2023

interim meeting of the W3C WebRTC WG, at
which we will cover:
○ Mediacapture-screenshare, mediacapture-extensions,

keyframe API, dynamic switching, RtpSender encoded
source

● Future meetings:
○ January 16
○ February 20
○ March 19

3

https://www.w3.org/2011/04/webrtc/wiki/Main_Page#Meetings
https://www.w3.org/2011/04/webrtc/wiki/January_16_2024
https://www.w3.org/2011/04/webrtc/wiki/February_20_2024
https://www.w3.org/2011/04/webrtc/wiki/March_19_2024

About this Virtual Meeting
● Meeting info:

○ https://www.w3.org/2011/04/webrtc/wiki/December 12_2023
● Link to latest drafts:

○ https://w3c.github.io/mediacapture-main/
○ https://w3c.github.io/mediacapture-extensions/
○ https://w3c.github.io/mediacapture-image/
○ https://w3c.github.io/mediacapture-output/
○ https://w3c.github.io/mediacapture-screen-share/
○ https://w3c.github.io/mediacapture-record/
○ https://w3c.github.io/webrtc-pc/
○ https://w3c.github.io/webrtc-extensions/
○ https://w3c.github.io/webrtc-stats/
○ https://w3c.github.io/mst-content-hint/
○ https://w3c.github.io/webrtc-priority/
○ https://w3c.github.io/webrtc-nv-use-cases/
○ https://github.com/w3c/webrtc-encoded-transform
○ https://github.com/w3c/mediacapture-transform
○ https://github.com/w3c/webrtc-svc
○ https://github.com/w3c/webrtc-ice

● Link to Slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● The meeting is (still) being recorded. The recording will be public.
● Volunteers for note taking? 4

https://www.w3.org/2011/04/webrtc/wiki/December_12_2023#WebRTC_WG_Virtual_Interim
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-extensions/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions/
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/mst-content-hint/
https://w3c.github.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://github.com/w3c/webrtc-encoded-transform
https://github.com/w3c/mediacapture-transform
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://www.w3.org/2011/04/webrtc/wiki/December_12_2023#WebRTC_WG_Virtual_Interim
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

W3C Code of Conduct
● This meeting operates under W3C Code of Ethics and

Professional Conduct

● We're all passionate about improving WebRTC and the
Web, but let's all keep the conversations cordial and
professional

5

https://www.w3.org/Consortium/cepc/
https://www.w3.org/Consortium/cepc/

Virtual Interim Meeting Tips
This session is (still) being recorded

● Click to get into the speaker queue.
● Click to get out of the speaker queue.
● Please wait for microphone access to be granted before

speaking.
● If you jump the speaker queue, you will be muted.
● Please use headphones when speaking to avoid echo.
● Please state your full name before speaking.
● Poll mechanism may be used to gauge the “sense of the

room”.

6

Understanding Document Status
● Hosting within the W3C repo does not imply adoption by the

WG.
○ WG adoption requires a Call for Adoption (CfA) on the

mailing list.
● Editor’s drafts do not represent WG consensus.

○ WG drafts do imply consensus, once they’re confirmed
by a Call for Consensus (CfC) on the mailing list.

○ Possible to merge PRs that may lack consensus, if a
note is attached indicating controversy.

7

Issues for Discussion Today
● 08:10 - 08:30 AM Mediacapture-Screenshare (Elad)
● 08:30 - 08:50 AM Mediacapture-Extensions (Elad & Guido)
● 08:50 - 09:10 AM Dynamic Switching (Tove)
● 09:10 - 09:30 AM RtpSender Encoded Source (Guido)
● 09:30 - 09:50 AM Keyframe API (Harald)
● 09:50 - 10:00 AM Wrapup and Next Steps (Chairs)

Time control:
● A warning will be given 2 minutes before time is up.
● Once time has elapsed we will move on to the next item.

8

Mediacapture-screen-share (Elad)
Start Time: 08:10 AM
End Time: 08:30 AM

9

For Discussion Today
● MediaCapture-screen-share

○ Issue 276: Handling of contradictory hints
○ Issue 281: Distinguish cancellations from absent OS permissions
○ Issue 219 (v2): Avoid user-confusion by not offering undesired audio

sources #219

10

https://github.com/w3c/mediacapture-screen-share/issues/276
https://github.com/w3c/mediacapture-screen-share/issues/281
https://github.com/w3c/mediacapture-screen-share/issues/219

// Audio generally not requested,
// but system-audio marked as desired.
navigator.mediaDevices.getDisplayMedia({
 audio: false,
 systemAudio: "include",
});

Contradictory hints - example #1

11

// Audio requested, including an explicit
// request for system-audio,
// but monitors asked to be excluded.
navigator.mediaDevices.getDisplayMedia({
 audio: true,
 systemAudio: "include",
 monitorTypeSurfaces: "exclude"
});

Contradictory hints - example #2

12

Contradictory hints - example #3

// Application requested monitors to be
// displayed most prominently,
// while simultaneously asking for monitors
// to not be offered.
navigator.mediaDevices.getDisplayMedia({
 video: { displaySurface: "monitor" },
 monitorTypeSurfaces: "exclude"
});

13

Above is a snapshot of the getDisplayMedia algorithm in the spec.

Proposal:
● Add a step for validating the interaction between constraints and options and reject

if a contradiction is detected.
● (Probably create a subroutine for it, naming specific possible contradictions.)

Handling of contradictory hints - proposal

14

Sometimes screen-sharing is blocked because the user presses cancel;
maybe the user changed their mind.

Sometimes screen-sharing is blocked because the OS permissions are
configured to block. In that case, some applications might wish to explain that
to the user.

Issue 281: Missing OS permissions - problem description

15

https://github.com/w3c/mediacapture-screen-share/issues/281

Issue 281: Missing OS permissions - proposal

16

(The ctor sets the name attribute to the value “NotAllowedError”.)

https://github.com/w3c/mediacapture-screen-share/issues/281

Possible objection: “Shouldn’t the UA inform the user?”

Answers:
● Not mutually exclusive - we could do both.
● Which change is more likely to happen in the foreseeable future?

○ A bespoke error is trivial to implement.
○ Custom UX to surface an error… Only sounds trivial until you try.

Issue 281: Possible objection

17

https://github.com/w3c/mediacapture-screen-share/issues/281

Issue 219: Don’t prompt users to share unrequested audio sources

Recall:
● Some users have only partial understanding of the difference between the

browser and the Web app.
● Absolutely not a single user can see the future.

We have previously specified systemAudio, which allows apps to say:
“I could use tab/window audio, but I would not use system audio.”

Result:
1. App doesn’t want system audio.
2. Browser doesn’t expose system audio toggle/checkbox/etc.
3. User doesn’t end up ticking the checkbox to share system audio.
4. User is not confused when system audio is not tramsmitted remotely.

18

https://github.com/w3c/mediacapture-screen-share/issues/219

“But Elad, this issue was closed 1.5 years ago. What now?”

Web applications have adopted systemAudio and are using it productively.
There is now appetite for windowAudio.

Issue 219: What now?

19

https://github.com/w3c/mediacapture-screen-share/issues/219

Issue 219: General Principle (Proposal)

20

Ask the user for the minimal set of permissions,
training them to give permissions sparingly, and
teaching them to view requests for excessive
permissions as inherently suspect.

https://github.com/w3c/mediacapture-screen-share/issues/219

Concern:
Would users who are unable to share window audio be nudged to share their
entire screen and system audio?

Solution:
If {windowAudio: "exclude"} is specified, allow the call to getDisplayMedia() if
{systemAudio: "exclude"}, and reject otherwise. (“Otherwise” being either
“include” or unspecified.)

Issue 219: Concern - nudges users towards sharing system audio?

21

https://github.com/w3c/mediacapture-screen-share/issues/219

Issue 219: Permitted permutations

22

getDisplayMedia({video: true, audio: true}); Browser offers {tab, window, screen} audio.

getDisplayMedia({
 video: true, audio: true,
 "systemAudio": "exclude"
});

Browser offers {tab, window} audio.

getDisplayMedia({
 video: true, audio: true,
 "windowAudio": "exclude",
 "systemAudio": "exclude"
});

Browser offers {tab} audio.

getDisplayMedia({video: true, audio: false}); Browser offers {} audio.

https://github.com/w3c/mediacapture-screen-share/issues/219

Discussion (End Time: 08:30)
●

23

Mediacapture-Extensions (Elad & Guido)
Start Time: 08:30 AM
End Time: 08:50 AM

24

Recap - Users’ Mental Model

25

Recap - Reality

26

● Video conferencing apps have hundreds of millions of daily active users.
● Often high-stake situation for these users.

○ Users with short time available to speak to distant loved ones
○ Users with social anxiety
○ Users in a job interview
○ Users pitching clients
○ Users presenting in WebRTC WG interims

Of this issue’s grave importance to users

27

28

I spoke but nobody could hear me.
I was not muted.

- Paying user

● We live in a competitive world.
● User experiences issues? Developer can’t help? User changes provider!

○ Users don’t care if the issue is with the hardware, the browser or the OS.
○ Problems with the browser? Users will use a native app.
○ Risk of loss of revenue - among the top developer concerns.

● Video conferencing providers have engineering teams.
○ Impacted by bug outside own codebase? Transparency needed!
○ Open source browser? Operating system? Ask own engineers to fix.
○ Closed source? File a clear bug on the correct entity (hardware, OS, browser).

Of this issue’s grave importance to developers

29

Problems:
1. Expose upstream state (isMuted, MuteReason, MediaSessionInfo)
2. Control upstream state - with a prompt (requestUnmute)

Sequencing:
● The first problem must be solved first.
● Before an app can solicit a user gesture, it must know that it is muted.

○ It must also know if requestUnmute() may be called.
○ Otherwise, users would be frustrated.

The Problems We Seek to Solve

30

State Exposure - MuteReason

● Solves the problem
● Is backwards compatible
● Acknowledges the possibility of multiple concurrent reasons

○ Good for telemetry (for the Web app)
○ Integrates well with any shape of requestUnmute()

● Only viable solution (see next slides)

31

● Not backwards compatible
● No non-destructive way to migrate developers to the new definition.

○ Want to remove func()?
■ Issue deprecation warnings for a few revisions.

○ Want to change the mute attribute?
■ How do you warn developers?
■ How do you measure how many of current users of the mute

attribute would be negatively impacted by a change of its
definition?

State Exposure non-solution: Change definition of mute attribute

32

● Unclear at the moment what is being proposed.
● Requires major modifications of the MediaSession spec.

○ No current support for reading the current state; only modifying it.
○ No current support for multiple devices.
○ What if muted for multiple reasons? User agent AND operating system?
○ Asynchronicity issues when tying to the onmute event.
○ State split between MediaStreamTrack and MediaSession - complex.

● Needlessly low-resolution.
○ UA-based muting? OS-based muting? Mic-gain set to 0%?
○ Why shouldn’t the app know? (Apps might wish to inform users.)

State Exposure non-solution: MediaSession-based APIs

33

We have often discussed requestUnmute(). But what is the exact shape?

MuteReason really helps here. It acknowledges a key point, that multiple
concurrent reasons are possible.
● Can be muted in the UA and the OS at the same time.
● Integrates well with the possibility of separate prompts.

○ Would requestUnmute() throw up two prompts?
○ MuteReason allows such API shapes as:

■ requestUnmute(“user-agent”)
■ requestUnmute(“operating-system”)

○ Not a requirement; we could still use requestUnmute().

State Exposure-Control Cross-over

34

Discussion (End Time: 08:50)
●

35

Dynamic Switching (Tove)
Start Time: 08:50 AM
End Time: 09:10 AM

36

Background
● Switching what is presented is common in video conferences,

but starting and stopping presentations is cumbersome.
● Direct surface switching added by some vendors:

○ Chrome: Between tabs
○ Safari on MacOS: Between windows/screens

37

How can we expand on this on the web?
Types of switching:
● Same-type surface switching (existing):

○ Between surfaces of the same type.
○ Can be done behind the scenes using an “injection model”

● Different-type surface switching (what we want!)
○ Cannot be done transparently:

■ Properties/methods are affected (e.g., capabilities)
■ Setup may be required (e.g., adding audio)

38

Proposal: Switch-track model
● Let apps opt-in to a switch-track model for surface switching

● If opted-in (switch-track model):
○ Same- and different-type surface switching.
○ When switching occurs:

■ Old tracks are stopped.
■ An event is posted with a new mediastream.

● If not opted-in (use injection model):
○ Same-type surface switching only.
○ When switching occurs:

■ Old tracks are migrated to the new source transparently.
■ An event is posted with a new mediastream (if the app has

registered an event listener).

39

Proposal: Switch-track model API
getDisplayMedia({appAssistedSurfaceSwitching: "include", …})

controller.onsourceswitch = event => {
 video.srcObject = event.stream;
};

40

State of discussions
Goal: Allow users to switch between different surfaces and add/remove audio
● General agreement that this functionality is of value

Recent points of the discussions:
1. Events/Callback - notification always?

○ Status: Agreement on events always
2. Explicit opt-in?

getDisplayMedia({appAssistedSurfaceSwitching: "include", …})
○ Status: Consensus forming in favor

3. Early/late decision-point?
○ Status: Main remaining point of disagreement

41

Counter-proposal: Late decision
● Surface switching (late decision/cancelable events):

○ Pause frame delivery from old sources and connected tracks
○ Post onsourceswitch event with a new stream for the new source-set
○ If preventDefault: stop old tracks, deliver frames to new stream
○ Otherwise: stop new tracks, resume frame delivery to old tracks

● Setup:
○ controller.onsourceswitch = event => {

 if (InjectionDesired(event))
 return; // Use injection model
 video.srcObject = event.stream;
 event.preventDefault(); // Use switch-track model
};

42

Problems with late decision
1. Track migration is inconsistent and unclear

○ Audio tracks may be added/removed - video tracks are injected
○ Are audio track ever migrated?
○ Are old tracks migrated to the new source before or after the event?

2. Injection model with different-type switching:
○ Properties expected to be constant change, e.g., capabilities, methods
○ Added tracks are not handled

3. Code is not self-evident.
○ What does preventDefault() mean?

4. The late-decision model is more complex (it’s a superset of the
early-decision switch-track model)
○ When is this complexity needed?

43

Discussion (End Time: 09:10)
●

44

RtpSender Encoded Source (Guido)
Start Time: 09:10 AM
End Time: 09:30 AM

45

Use Case

46

Architecture for a node in a P2P network

47

Input PC1

Input PC2

Output PC

Transformer

encoded-transform to read
encoded frames from PC1

and PC2

Custom processing to
produce an output frame

(discard duplicates, adjust
metadata, drop layers)

Write to Output PC using
RtpSenderEncodedSource

To next
peer

From
Peer1

From
Peer2

● PC1 and PC2 provide the same media (might have different metadata)
● Output masks failures from either PC1 or PC2
● There might be more than 2 input peers and more 1 output peer

Youenn's proposal (in ET issue 211)
interface RTCRtpSenderEncodedSource {

 constructor()

 readonly attribute RTCRtpSenderEncodedSourceHandle handle;

 // Need congestion API, error API and enqueue API

 undefined enqueue((EncodedAudioChunk or EncodedVideoChunk) chunk, DOMString mimeType)
};

[Exposed=(DedicatedWorker, Window), Transferable]

interface RTCRtpSenderEncodedSourceHandle {}

partial interface RTCRtpSender {

 undefined replaceTrack(RTCRtpSenderEncodedSourceHandle handle);

 readonly attribute RTCRtpSenderEncodedSourceHandle encodedSourceHandle;
}

48

https://github.com/w3c/webrtc-encoded-transform/issues/211

Issues
● EncodedAudioChunk and EncodedVideoChunk seem appropriate for

non-forwarding use cases
○ We also want to support those cases
○ Separate discussion

● We want to forward RTP Metadata too, not just payload
○ Applications need the metadata
○ Forwarders need the metadata

■ For example, drop layers to save bandwidth

● We want to adjust RTP Metadata in the output
○ For the same payloads, input PCs might have different metadata

49

Extended proposal
● Allow the enqueue method to accept RTCRtpEncodedVideoFrame and

RTCRtpEncodedAudioFrame
○ Allows forwarding metadata

● Allow sending a frame with updated metadata to the output PC
○ Provides a consistent metadata to the output PC
○ Makes it possible to mask failures of input PCs

● Not all metadata fields need to be updatable. For the forwarding case, the
following should suffice:
○ rtpTimestamp / timestamp
○ frameId
○ dependencies

50

Draft extended proposals
interface RTCRtpSenderEncodedSource {

 undefined enqueue((EncodedAudioChunk or EncodedVideoChunk) chunk, DOMString mimeType);

 undefined enqueue((RTCEncodedVideoFrame or RTCEncodedAudioFrame) frame);
};

// A: new constructor (only video shown, but also needed for audio)

interface RTCEncodedVideoFrame {

 constructor(RTCEncodedVideoFrame originalFrame,

 RTCEncodedVideoFrameMetadata newMetadata);
};

// B: new method, possibly used in combination with structured clone

interface RTCEncodedVideoFrame {

 // Updates eligible fields present in newMetadata, unset fields in newMetadata

 // leave existing fields unmodified

 setMetadata(RTCEncodedVideoFrameMetadata newMetadata);
};

51

Discussion (End Time: 09:30)
● Do we have rough consensus on:

○ Introducing RTCRtpSenderEncodedSource
○ Support for feeding RTCEncodedVideoFrames and

RTCEncodedAudioFrames
○ Support for some form of updating metadata for

RTCEncodedVideoFrames/RTCEncodedAudioFrames

52

Keyframe API (Harald)
Start Time: 09:30 AM
End Time: 09:50 AM

53

Status of keyframe event proposal

● Still agreement that it is useful
● #215 isolated keyframe event, but kept the

mixins upstream and downstream
● Editors meeting agreed that keyframe event

was good, but wanted to only use mixins when
we have a second usage

● The edits were completed, and #215 is
merged.

54

https://github.com/w3c/webrtc-encoded-transform/pull/215

SDP: Jan-Ivar and Harald have been talking
● Points of agreement:

○ Packetization mode is a new field inside codec description dictionary
○ Javascript code should deal with codec names, not PT numbers
○ There’s a need for declaring what codecs a transform uses and

produces (see next slides)
● Still discussing:

○ Codecs declared by app on transform, on transceiver, or both

55

The Fan-In Use Case

● MCU forwards
frames on a
single SSRC

● Some are old
format, some are
new format

● Only new format
needs transform

56

MCU

Client

Client

Client

Special

Input filter on Transform

● Let RTCRtpTransform have an “input filter”
parameter (a codec list)

● Only frames matching “input filter” get
transformed

● Other frames are forwarded directly to sink
● Typical saving observed: 1 watt on a

representative call.
57

Discussion (End Time: 09:50)
●

58

Wrapup and Next Steps
Start Time: 09:50 AM
End Time: 10:00 AM

59

Next Steps
● Content goes here

60

Thank you

Special thanks to:

WG Participants, Editors & Chairs

61

