
W3C WebRTC
WG Meeting
December 5, 2023

8 AM - 10 AM

Chairs: Bernard Aboba
Harald Alvestrand
Jan-Ivar Bruaroey 1

W3C WG IPR Policy
● This group abides by the W3C Patent Policy

https://www.w3.org/Consortium/Patent-Policy/
● Only people and companies listed at

https://www.w3.org/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

2

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!
● Welcome to the first December interim

meeting of the W3C WebRTC WG, at which
we will cover:
○ MediaCapture-ScreenShare, WebRTC Extended Use Cases,

RtpTransport, Mediacapture-Extensions, WebRTC-Extensions,
Encrypted Transform, WebRTC-SVC

● Future meetings:
○ December 12
○ January 16
○ February 20
○ March 19

3

https://www.w3.org/2011/04/webrtc/wiki/Main_Page#Meetings
https://www.w3.org/2011/04/webrtc/wiki/December_12_2023
https://www.w3.org/2011/04/webrtc/wiki/January_16_2024
https://www.w3.org/2011/04/webrtc/wiki/February_20_2024
https://www.w3.org/2011/04/webrtc/wiki/March_19_2024

About this Virtual Meeting
● Meeting info:

○ https://www.w3.org/2011/04/webrtc/wiki/December 05_2023
● Link to latest drafts:

○ https://w3c.github.io/mediacapture-main/
○ https://w3c.github.io/mediacapture-extensions/
○ https://w3c.github.io/mediacapture-image/
○ https://w3c.github.io/mediacapture-output/
○ https://w3c.github.io/mediacapture-screen-share/
○ https://w3c.github.io/mediacapture-record/
○ https://w3c.github.io/webrtc-pc/
○ https://w3c.github.io/webrtc-extensions/
○ https://w3c.github.io/webrtc-stats/
○ https://w3c.github.io/mst-content-hint/
○ https://w3c.github.io/webrtc-priority/
○ https://w3c.github.io/webrtc-nv-use-cases/
○ https://github.com/w3c/webrtc-encoded-transform
○ https://github.com/w3c/mediacapture-transform
○ https://github.com/w3c/webrtc-svc
○ https://github.com/w3c/webrtc-ice
○ https://github.com/w3c/webrtc-rtptransport

● Link to Slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● The meeting is (still) being recorded. The recording will be public.
● Volunteers for note taking? 4

https://www.w3.org/2011/04/webrtc/wiki/December_05_2023#WebRTC_WG_Virtual_Interim
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-extensions/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions/
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/mst-content-hint/
https://w3c.github.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://github.com/w3c/webrtc-encoded-transform
https://github.com/w3c/mediacapture-transform
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://github.com/w3c/webrtc-rtptransport
https://www.w3.org/2011/04/webrtc/wiki/December_05_2023#WebRTC_WG_Virtual_Interim
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

W3C Code of Conduct
● This meeting operates under W3C Code of Ethics and

Professional Conduct

● We're all passionate about improving WebRTC and the
Web, but let's all keep the conversations cordial and
professional

5

https://www.w3.org/Consortium/cepc/
https://www.w3.org/Consortium/cepc/

Virtual Interim Meeting Tips
This session is (still) being recorded

● Click to get into the speaker queue.
● Click to get out of the speaker queue.
● Please wait for microphone access to be granted before

speaking.
● If you jump the speaker queue, you will be muted.
● Please use headphones when speaking to avoid echo.
● Please state your full name before speaking.
● Poll mechanism may be used to gauge the “sense of the

room”.

6

Understanding Document Status
● Hosting within the W3C repo does not imply adoption by the

WG.
○ WG adoption requires a Call for Adoption (CfA) on the

mailing list.
● Editor’s drafts do not represent WG consensus.

○ WG drafts do imply consensus, once they’re confirmed
by a Call for Consensus (CfC) on the mailing list.

○ Possible to merge PRs that may lack consensus, if a
note is attached indicating controversy.

7

Issues for Discussion Today
● 08:10 - 08:30 AM Grab Bag (Sameer, Jan-Ivar, Florent)
● 08:30 - 08:50 AM WebRTC Extended Use Cases (Bernard & Sun)
● 08:50 - 09:50 AM RtpTransport (Peter, Bernard, Jan-Ivar)
● 09:50 - 10:00 AM Wrapup and Next Steps (Chairs)

Time control:
● A warning will be given 2 minutes before time is up.
● Once time has elapsed we will move on to the next item.

8

#

Grab Bag
Start Time: 08:10 AM
End Time: 08:30 AM

9

For Discussion Today
● WebRTC-Encoded Transform (Fippo)

○ PR 212: Describe data attribute
● WebRTC-Extensions

○ PR 175: Add RTCIceTransport method to remove pairs
○ Issue 2170: Data channel default binaryType value is 'blob'

● MediaCapture-Extensions
○ PR 134: Introduce avg/min/max audio latency and resetLatency() (Henrik)

10

https://github.com/w3c/webrtc-encoded-transform/pull/212
https://github.com/w3c/webrtc-extensions/pull/175
https://github.com/w3c/webrtc-pc/issues/2170
https://github.com/w3c/mediacapture-extensions/pull/134

PR 212: Describe data

● The specification does not describe the format of the encoded frame data
○ Codec-specific, with some surprises
○ addition of mimeType allows describing this
○ PR adds table with informative references for a few mimeTypes

● SVC behavior needs to be described too
○ Called once per spatial layer with same RTP timestamp
○ “Two-time pad” if E2EE KDF depends only on RTP timestamp and not

frameId
○ Q: does simulcast behavior need special mention too?

● Underlying packetizer makes assumptions about format
○ E.g. H264 packetization needs to retain annex-b NALUs with start codes

● Caveat: output and input may not be the same
○ packetization may drop some parts like AV1 temporal OBUs

● Please review!
11

https://github.com/w3c/webrtc-encoded-transform/pull/212
https://www.rfc-editor.org/rfc/rfc3711#section-9.1
https://bugs.chromium.org/p/webrtc/issues/detail?id=11886&
https://bugs.chromium.org/p/chromium/issues/detail?id=1498928

PR 175: Add RTCIceTransport method to remove pairs

 Promise<undefined> removeCandidatePair(RTCIceCandidatePair pair);

● What is the use case?
○ App cancels nomination & selects a different candidate pair
○ Now app wants to stop pinging other pairs and release resources

● What does "remove" mean?
○ "Tell ICE agent that app does not want to use this pair in this session"
○ Remove pair from (all) Checklists ⟹ no more pings
○ Update Checklist states ⟹ Failed if all pairs removed or Failed
○ Free unpaired candidates ⟹ release resources
○ Removed pairs cannot be added back (unless regathering supported)

● Is an Array argument needed?
○ Useful if app selects a pairs and wants to stop pinging all others
○ Not essential, but can reduce thread hops when bulk removing 12

https://github.com/w3c/webrtc-extensions/pull/175
https://webidl.spec.whatwg.org/#idl-promise
https://webidl.spec.whatwg.org/#idl-undefined
https://pr-preview.s3.amazonaws.com/sam-vi/webrtc-extensions/pull/175.html#dom-rtcicetransport-removecandidatepair
https://www.w3.org/TR/webrtc/#dom-rtcicecandidatepair

Issue 2170: Data channel default binaryType value is 'blob'

● DataChannel.binaryType has 2 possible values “blob” and “arraybuffer”
● “arraybuffer” is implemented in all implementations.
● “blob” implementation is missing in Chromium based browsers.
● “blob” is the current standard default value.

○ Chromium and WebKit use “arraybuffer” by default.
○ Safari correctly use “blob” by default.

● Many applications rely on Chromium or WebKit’s default “arraybuffer”
binaryType explicitly, breaking compatibility with Firefox. Changing the
default value to “blob” would break those.

● Compatibility with WebSocket may not be considered as important now.

● Proposal: For the sake of interoperability, we propose that the default
value is changed to “arraybuffer”.

13

https://github.com/w3c/webrtc-pc/issues/2170

PR 134: Introduce avg/min/max audio latency and resetLatency() (Henrik)

As of recently, MediaStreamTrack’s Audio Stats API define latest input latency:

✅ Which is exposed as track.stats.latency as an instantaneous value:
 partial interface MediaStreamTrackAudioStats {

 readonly attribute DOMHighResTimeStamp latency;

 }

❌ But…
● Apps care about average input latency over app-defined time intervals.

➢ sumOfLatencyMeasurements/numLatencyMeasurements is not the most ergonomic.
● Average latency hides peaks and troughs and could be misleading on its own.

➢ We need “min” and “max” too.

14

https://github.com/w3c/mediacapture-extensions/pull/134
https://w3c.github.io/mediacapture-extensions/#dfn-latest-input-latency

PR 134: Introduce avg/min/max audio latency and resetLatency() (Henrik)

PR 134: Expose average, minimum and maximum since method call:
partial interface MediaStreamTrackAudioStats {

 readonly attribute DOMHighResTimeStamp latency;

 // The avg/min/max latency since last call to resetLatency()

 readonly attribute DOMHighResTimeStamp averageLatency;

 readonly attribute DOMHighResTimeStamp minimumLatency;

 readonly attribute DOMHighResTimeStamp maximumLatency;

 undefined resetLatency();

}

Proposal: Keep it simple. Merge PR.

15

https://github.com/w3c/mediacapture-extensions/pull/134
https://github.com/w3c/mediacapture-extensions/pull/134

Discussion (End Time: 08:30)
●

16

WebRTC Extended Use Cases
Start Time: 08:30 AM
End Time: 08:50 AM

17

For Discussion Today

● Section 3.2: Low Latency Streaming

18

https://www.w3.org/TR/webrtc-nv-use-cases/#low-latency-streaming

Status of Section 3.2: Low Latency Streaming
● Section 3.2: Low Latency Streaming

○ Section 3.2.1: Game Streaming
○ Section 3.2.2: Low Latency Broadcast with Fanout

● CfC concluded on January 16, 2023: Summary
○ 6 responses received, 5 in support, 1 no opinion
○ Open Issues mentioned in responses:

■ Issue 103: Feedback related to WebRTC-NV Low Latency Streaming Use Case
○ Moved issues

■ Issue 80: Access to raw audio data (TPAC 2023: move to audio codec use case)

○ Closed issues/PRs
■ Issue 85: What is a "node" in the low latency broadcast with fanout use case?
■ Issue 86: Is the DRM requirement in the Low latency Broadcast with Fanout use case satisfied

by data channels?
■ Issue 91: N15 latency control should be formulated in a technology-agnostic way
■ Issue 94: Improvements for game pad input
■ Issue 95: Low-latency streaming: Review of requirements
■ PR 124: Requirement N38 is satisfied by jitterBufferTarget (partial fix for Issue 103)

●
19

https://www.w3.org/TR/webrtc-nv-use-cases/#low-latency-streaming
https://www.w3.org/TR/webrtc-nv-use-cases/#game-streaming
https://www.w3.org/TR/webrtc-nv-use-cases/#auction
https://lists.w3.org/Archives/Public/public-webrtc/2023Jan/0062.html
https://github.com/w3c/webrtc-nv-use-cases/issues/103
https://github.com/w3c/webrtc-nv-use-cases/issues/80
https://github.com/w3c/webrtc-nv-use-cases/issues/85
https://github.com/w3c/webrtc-nv-use-cases/issues/86
https://github.com/w3c/webrtc-nv-use-cases/issues/91
https://github.com/w3c/webrtc-nv-use-cases/issues/94
https://github.com/w3c/webrtc-nv-use-cases/issues/95
https://github.com/w3c/webrtc-nv-use-cases/pull/124
https://github.com/w3c/webrtc-nv-use-cases/issues/103

Section 3.2.2: Low Latency Broadcast w/fanout

20

PR 123: Use Case Goals
● Proposed refocus on auctions (originally suggested by Tim Panton).

○ Online auctions require ultra low latency (more important than quality)
○ Need for participant feedback
○ DRM typically not required
○ IETF WISH WG: ULL ingestion and distribution via WebRTC (WHIP/WHEP)
○ Low latency use cases like Church services, Webinars removed

■ Use streaming technology (e.g. LL-HLS), not WebRTC
■ Fanout requirements already covered by RTCDataChannel requirements (e.g. worker

support) in Section 3.1: File Sharing.
● P2P Fanout for Auctions: Data Channel transport not a good fit

○ Issues with backpressure, due to decoupling of event loop and receive window
○ SCTP transport implements NewReno, but low latency congestion control required
○ Need to implement RTCP-style feedback (e.g. PLI) and FEC/RED in the

application
○ Transport mode issues

■ Reliable/ordered transport: issues with latency, HoL blocking, buffer size
■ Unreliable/unordered transport: app needs to reimplement NACK/RTX 21

https://github.com/w3c/webrtc-nv-use-cases/pull/124

PR 123: Section 3.2.2: Clarify Use Cases

22

https://github.com/w3c/webrtc-nv-use-cases/pull/124

Section 3.2.1: Game Streaming

23

Section 3.2.1: Game Streaming
● Issues

○ Issue 103: Section 3.2: Feedback relating to WebRTC-NV Low
Latency Streaming Use Case

● PRs
○ PR 125: Clarify Requirement N37
○ PR 118: Clarify Game Streaming Requirements

■ Follow up N48, 49, 50 feedback
■ Clarification on N51 requirement

24

https://github.com/w3c/webrtc-nv-use-cases/issues/103
https://github.com/w3c/webrtc-nv-use-cases/pull/125
https://github.com/w3c/webrtc-nv-use-cases/pull/118

Issue #103: Feedback related to WebRTC-NV Low Latency Streaming Use Case

25

https://github.com/w3c/webrtc-nv-use-cases/issues/103

PR 125: Clarify Requirement N37

26

https://github.com/w3c/webrtc-nv-use-cases/pull/125

PR 118: Clarify Game Streaming requirements (Section 3.2.1)

● Rationale: Cloud Game Characteristics
● A highly interactive application that depends on continuous visual feedback to

user inputs.
● The cloud gaming latency KPI would track Click to Pixel latency - time elapsed

between user input to when the game response is available at the user display
(where as non-interactive applications may track G2G latency as the KPI).

● Requires low and consistent latency. Desirable C2P latency range is typically 30 -
150ms. A latency higher than 170 ms makes high precision games unplayable.

● Loss of video is highly undesirable. Garbled or corrupt video with fast recovery
may be preferable in comparison to a video freeze.

● Motion complexity can be high during active gameplay scenes.
● Consistent latency is critical for player adaptability. Varying latency requires

players to adapt continuously which can be frustrating and break gameplay.
● The combination of high complexity, ultra low latency and fast recovery will require

additional adaptive streaming and recovery techniques.

27

https://github.com/w3c/webrtc-nv-use-cases/pull/118

PR 118: Clarify Game Streaming requirements (Section 3.2.1)

28

ID Requirement Description Benefits to Cloud
Gaming

Cloud Gaming
Specific?

N48 Recovery
using
non-key
frames

WebRTC must support a mode allows
video decoding to continue even after a
frame loss without waiting for a key
frame. This enables addition of recovery
methods such as using frames containing
intra coded macroblocks and coding units
- WebRTC Issue: 15192

Players can continue
to game with partially
intelligible video.
Fast recovery from
losses on the network

Can be used by
any application
where video
corruption is
preferred to video
freezes

N49 Loss of
encoder
-decoder
synchronicity
notification

The WebRTC connection should
generate signals indicating to encoder
about loss of encoder-decoder
synchronicity (DPB buffers) and
sequence of the frame loss.(RFC 4585
section-6.3.3: Reference Picture
Selection Indication) - Delete of RPSI
(Mar/2017)

Fast recovery from
losses on network.
Helps application to
choose right recovery
method in lossy
network.

● Fast Recovery

https://github.com/w3c/webrtc-nv-use-cases/pull/118
https://bugs.chromium.org/p/webrtc/issues/detail?id=15192
https://chromiumdash.appspot.com/commit/25d0bdc1bcbd78adabe5dac4ff965434cd83a41f
https://chromiumdash.appspot.com/commit/25d0bdc1bcbd78adabe5dac4ff965434cd83a41f

PR 118: Clarify Game Streaming requirements (Section 3.2.1)

29

ID Requirement Description Benefits to Cloud Gaming Cloud Gaming
Specific?

N50 Configurable
RTCP
transmission
interval

The application must be able to
configure RTCP feedback
transmission interval (e.g.,
Transport-wide RTCP Feedback
Message).

Gaming is sensitive to
congestion and packet loss
resulting in higher latency.
Consistent RTCP feedback
helps application to adapt
video quality to varying
network (BWE and packet
loss).

In general, short
latency is very
important, but
consistent latency
is even more
important for the
cloud gaming.

N51 Improve
accuracy of
Jitter buffer
control

The user agent needs to provide
the jitter buffer to account for jitter
in the pipeline up to the frame
render stage - WebRTC Issue:
15535

Increases accuracy of
jitter buffer adaptation and
helps maintain consistent
latency

● Consistent Latency

https://github.com/w3c/webrtc-nv-use-cases/pull/118
https://bugs.chromium.org/p/webrtc/issues/detail?id=15535

N48 Recovery using non-key frames

30

● Regarding Non-Keyframe based Recovery
○ RTP de-packetization and framing would need to be updated to recover using

non-key frame.
■ Currently RTP receiver stops providing frames to decoder on packet loss.
■ Need a way to start providing subsequent completely received non-key frames

to decoder.
■ Requires decoder API support (only encoder API discussed at TPAC)

→ Is there enough consensus to add this requirement to WebRTC requirements list? Exactly how it is solved
(if solvable) can be discussed later, we are working with the use cases and requirements in this document.

The application must be able to control video decoding to continue even after a frame-loss
without waiting for a key frame. This enables fast recovery from lossy network conditions.

N49: Loss of encoder -decoder synchronicity notification

31

● IETF discussion relating to reference feedback in HEVC
○ Draft adopted in AVTCORE WG as draft-ietf-avtcore-hevc-webrtc

■ Github issues: https://github.com/aboba/hevc-webrtc/issues
■ In RFC 7798 Section 8.3, use of RPSI for positive acknowledgment is deprecated, used

only to indicate decoding of a reference by the client.
■ HEVC usage of RPSI different from VP8 (positive acknowledgement)
■ Will pursue LNTF RTCP message as a short-term solution
■ Will continue to pursue on the RPSI approach and find a way to meet the codec agnostic

concern raised by RPSI RTCP feedback support · Issue #13

→ Ongoing discussions are about "how" to implement this. Is there consensus about the requirement. We would like to
conclude the PR?

: The application must be able to generate signals that indicate to the encoder the loss of encoder-decoder
synchronicity (DPB buffers) and the sequence of frame loss using the platform-agnostic protocols. This helps the
application choose the right recovery method in a lossy network.

https://github.com/aboba/hevc-webrtc/issues/13

N50: Configurable RTCP transmission interval
● We found the implementation and need to confirm the Working Group feedback

○ RFC 4585: Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback
(RTP/AVPF) (rfc-editor.org)

■ The trr-int parameter indicates the interval between regular RTCP packets in milliseconds. The syntax
is as follows:

● a=rtcp-fb:pt trr-int interval
● where pt is the payload type and interval is the desired value in milliseconds. If the interval is

zero, it means that regular RTCP packets are not expected. The trr-int parameter can be
specified at the media level or at the payload type level.

● a=rtcp-fb:97 trr-int 100 // regular RTCP packets are expected every 100 milliseconds for payload type 97

○ Current syntax does not satisfy our requirements since it is generic for all RTCP messages.

→ Ongoing discussions are about "how" to implement this. Is there consensus about the requirement. We would like to
conclude the PR? Why can't we have a requirement on enabling quicker reacting (transport wide) congestion control
(presumably enabled by frequent RTCP reports)?

: The application must be able to configure RTCP feedback transmission interval (e.g., Transport-wide RTCP Feedback
Message). This helps the application adapt the video quality to the varying network and maintain consistent latency.

32

https://www.rfc-editor.org/rfc/rfc4585.html
https://www.rfc-editor.org/rfc/rfc4585.html
https://source.chromium.org/chromium/chromium/src/+/main:third_party/webrtc/call/video_send_stream.h;drc=f5bdc89c7395ed24f1b8d196a3bdd6232d5bf771;bpv=1;bpt=1;l=171?gsn=rtcp_report_interval_ms&gs=KYTHE%3A%2F%2Fkythe%3A%2F%2Fchromium.googlesource.com%2Fcodesearch%2Fchromium%2Fsrc%2F%2Fmain%3Flang%3Dc%252B%252B%3Fpath%3Dthird_party%2Fwebrtc%2Fcall%2Fvideo_send_stream.h%236c8rYH8mThDTcL-luRCLuvS4NDsnHLyzN9zpVQFbdGU

N51:Improve accuracy of Jitter buffer control
● As the Cloud gaming service supports higher resolution(4K) and higher frame rate(120p), we found that webrtc

has many assumptions on the it’s implementation assuming default video frame rates 60fps and render delay as
10ms etc.

○ third_party/webrtc/modules/video_coding/timing/timing.h : kDelayMaxChangeMsPerS = 100;

○ 1327251 - Use render time and RTP timestamps in low-latency video path - chromium

■ This bug tracks the work with making the signalling to the compositor explicit and always setting a reference time as well as removing some

60fps assumptions by instead using the actual RTP timestamps to determine the frame rate.

● So it make hard to control the latency through the Jitter buffer, so want to propose the implementation for getting
the correct value on the rendering on the device.

■ 15535:Jitter buffer to account for jitter in the pipeline up to the frame render stage

→ Is there enough consensus to add this requirement to WebRTC requirements list?

The user agent needs to provide the jitter buffer to account for jitter in the pipeline up to the frame
render stage. This helps the application adapt the video quality to the varying network and maintain
consistent latency.

33

https://blog.google/products/chromebooks/geforce-now-baldurs-gate-iii/
https://source.chromium.org/chromium/chromium/src/+/main:third_party/webrtc/modules/video_coding/timing/timing.h;drc=f3ee53147a677fb8d5fac5a83e68a41041c66758;bpv=1;bpt=1;l=57?gsn=kDelayMaxChangeMsPerS&gs=KYTHE%3A%2F%2Fkythe%3A%2F%2Fchromium.googlesource.com%2Fcodesearch%2Fchromium%2Fsrc%2F%2Fmain%3Flang%3Dc%252B%252B%3Fpath%3Dthird_party%2Fwebrtc%2Fmodules%2Fvideo_coding%2Ftiming%2Ftiming.h%23EV3bwWCHhXp_lb2qafN6lgChtNYosSNEFDKBYIIEcGM
https://bugs.chromium.org/p/chromium/issues/detail?id=1327251
https://bugs.chromium.org/p/webrtc/issues/detail?id=15535

Discussion (End Time: 08:50)
●

34

RtpTransport
Start Time: 08:50 AM
End Time: 09:50 AM

35

GitHub Repo: https://github.com/w3c/webrtc-rtptransport/

https://github.com/w3c/webrtc-rtptransport/

RtpTransport

1. Review Current State
2. Addressing Previous Comments
3. Issues

a. Issue 9: Customizing piecemeal
b. Issue 10: SDP “Bumper lanes”
c. Issue 7: Support for SRTP/cryptex
d. Issue 13: Workers
e. Issue 8: WHATWG streams

4. Jan-Ivar's Slides
36

https://github.com/w3c/webrtc-rtptransport/issues/9
https://github.com/w3c/webrtc-rtptransport/issues/10
https://github.com/w3c/webrtc-rtptransport/issues/7
https://github.com/w3c/webrtc-rtptransport/issues/13
https://github.com/w3c/webrtc-rtptransport/issues/8

RtpTransport

1. Review Current State
2. Addressing Previous Comments
3. Issues

a. Issue 9: Customizing piecemeal
b. Issue 10: SDP “Bumper lanes”
c. Issue 7: Support for SRTP/cryptex
d. Issue 13: Workers
e. Issue 8: WHATWG streams

4. Jan-Ivar's Slides
37

https://github.com/w3c/webrtc-rtptransport/issues/9
https://github.com/w3c/webrtc-rtptransport/issues/10
https://github.com/w3c/webrtc-rtptransport/issues/7
https://github.com/w3c/webrtc-rtptransport/issues/13
https://github.com/w3c/webrtc-rtptransport/issues/8

Review Current State

To swap back into your memory the current state:

RtpTransport Reminder

38

https://docs.google.com/document/d/1cousnS2rmHRH7GEMjWfHTisdUxD2FSVHREbgkbZhuCE/edit#heading=h.2vx6woi9m2uv

TL;DR: Rough Consensus So Far
● We want some kind of packet-level API for sending and receiving RTP/RTCP.

● Packets must always be encrypted using SRTP/SRTCP.

● Packets must be congestion controlled (as much as RTP/RTCP usually is).

39

TL;DR: Explainer
https://github.com/w3c/webrtc-rtptransport/blob/main/explainer.md

Summary: The goal is for the web app to be able to do custom things:

● custom payloads/codecs

● custom packetization

● custom FEC

● custom NACK/RTX

● custom metadata

● custom RTCP messages

● etc
40

https://github.com/w3c/webrtc-rtptransport/blob/main/explainer.md

TL;DR: Explainer (cont’d)
https://github.com/w3c/webrtc-rtptransport/blob/main/explainer.md

Code examples are speculative and immature. They assume the model

presented at TPAC, don't represent subsequent discussion, and probably have

mistakes:

● RtpTransport is constructed via

RTCPeerConnection.createRtpTransport()

● RtpTransport has a writable stream for sending

● RtpTransport receives via an onrtppacket EventHandler

This is relevant to issues 14 and 15
41

https://github.com/w3c/webrtc-rtptransport/blob/main/explainer.md

TL;DR: Spec
https://github.com/w3c/webrtc-rtptransport/blob/main/index.bs

Summary: Just a skeleton so far. But hopefully soon:

● RtpPackets: payload type, timestamp, header extensions, payload, …
● RtcpPackets: payload type, subtype, payload, …

But that may change with discussions we have today…

42

https://github.com/w3c/webrtc-rtptransport/blob/main/index.bs

RtpTransport

1. Review Current State
2. Addressing Previous Comments
3. Issues

a. Issue 9: Customizing piecemeal
b. Issue 10: SDP “Bumper lanes”
c. Issue 7: Support for SRTP/cryptex
d. Issue 13: Workers
e. Issue 8: WHATWG streams

4. Jan-Ivar's Slides

43

https://github.com/w3c/webrtc-rtptransport/issues/9
https://github.com/w3c/webrtc-rtptransport/issues/10
https://github.com/w3c/webrtc-rtptransport/issues/7
https://github.com/w3c/webrtc-rtptransport/issues/13
https://github.com/w3c/webrtc-rtptransport/issues/8

Addressing Previous Comments
From https://www.youtube.com/watch?v=xJMXnf3Qwh8 around 1:08

● Harald: "There might be two modes here"

○ A mode that can only send/receive what is negotiated in SDP for

an m-line (e.g. “bumper lanes”).

○ A mode that can send/receive anything on the PeerConnection.

● Jan-Ivar: "I imagined a new type of data channel"

○ Replacing the source of RTP rather than providing control of RTP.

○ The input is a MediaStreamTrack or a writable (pre-encoded data)

● Lots of suggestions for specifics (API shape, RTP specifics)

● "Piecemeal Customization"
44

https://www.youtube.com/watch?v=xJMXnf3Qwh8

Before specifics, what general direction?

45

New type of
Data
Channel

Piecemeal
Customization

TPAC RtpTransport

Strawman: A new type of data channel
● PeerConnection.createRtpDataChannel()

○ Can only send RTP, not RTCP

○ You don't pick payload type, SSRC, seqnum, header extensions, …
○ You pick the payload and maybe the timestamp

● A sufficiently sophisticated app could use this

by just putting everything into the payload.

● It's not as compatible with existing endpoints.

● But maybe that's enough.

46

Strawman: Full Piecemeal Customization
● RtpSender.getRtpStream("rid")

○ Capture the RTP packets that would have been sent

○ Insert the RTP packets that will be sent

(maybe leave unmodified; maybe replace)

● Let's you customize things piecemeal. e.g:

○ Keep packetization but change RTX

○ Keep RTX but change packetization

● Probably more convenient for an app

● But must have a way more complex API

(because RTP is complex)
47

Strawman: RtpTransport from TPAC
● Roughly halfway between the previous two

○ It's "you do everything" kind of like the new type of data channel

○ With the low-level RTP packet control of full piecemeal

customization

48

Another way to think about it…

49

Can customize RTP to/from
RtpReceiver/RtpSender

Cannot

High
Level 🤨 New Type of Data Channel

Low
Level

Full Piecemeal
Customization

TPAC RtpTransport

Or another way to think about it…

50

TPAC
RtpTransport

New Type of
Data Channel

Full Piecemeal
Customization

Simple Complex

Strawman Battle
● Are there other ideas?

● Which do we want?

● How do we decide?

51

RtpTransport

1. Review Current State
2. Addressing Comments from Last Time
3. Issues

a. Issue 9: Customizing piecemeal
b. Issue 10: SDP “Bumper lanes”
c. Issue 7: Support for SRTP/cryptex
d. Issue 13: Workers
e. Issue 8: WHATWG streams

4. Jan-Ivar's Slides
52

https://github.com/w3c/webrtc-rtptransport/issues/9
https://github.com/w3c/webrtc-rtptransport/issues/10
https://github.com/w3c/webrtc-rtptransport/issues/7
https://github.com/w3c/webrtc-rtptransport/issues/13
https://github.com/w3c/webrtc-rtptransport/issues/8

Issue 9: Customizing Piecemeal

● If new type of data channel or TPAC RtpTransport:
○ Not possible

● If full piecemeal customization
○ Built into the API from the beginning
○ Could match RFC 7656 with types like:

■ RtpStream: 1 ssrc; N packets
■ RtpRepairedStream: 1 RtpStream; 1+ RTX RtpStreams
■ RtpSender: N RtpRepairedStreams (outbound)
■ RtpReceiver: 1 RtpRepairedStream (inbound)

 53

https://github.com/w3c/webrtc-rtptransport/issues/8

Issue 10: SDP “Bumper lanes”

● If new type of data channel:
○ Bumper lanes strictly enforced (you can't control much)

● If full piecemeal customization:
○ Bumper lanes lightly enforced

(perhaps SSRCs, PTs, header ext IDs)

● If TPAC RtpTransport:
○ No bumper lanes

54

https://github.com/w3c/webrtc-rtptransport/issues/10

Issue 7: SRTP/Cryptex (RFC 9335)

● If strawman new type of data channel or TPAC RtpTransport:
○ Add an API point to turn on or off

(probably for all packets, not per-packet)
● If full piecemeal customization:

○ Just use what's negotiated?
● In all cases:

○ Applied at SRTP layer
○ Web app never sees encrypted packet
○ Like DTLS/SCTP for data channels or QUIC for WebTransport
○ It just happens underneath

55

https://github.com/w3c/webrtc-rtptransport/issues/7

Issue 13: Workers
● If new type of data channel:

○ Transfer the new "data channel object"
(BTW, we probably want undirectional objects)

● If full piecemeal customization:
○ Transfer the "RtpStream"?

● If TPAC RtpTransport:
○ Transfer the whole RtpTransport?

56

https://github.com/w3c/webrtc-rtptransport/issues/13

Issue 11: Arbitrary RTCP

57

Can a web app send arbitrary bytes in RTCP messages? Such as XR or LNTF?

● If new type of data channel:
○ No (must be embedded in RTP payload)

● If full piecemeal customization:
○ Maybe (if we want to customize RTCP)

● If TPAC RtpTransport:
○ Yes

https://github.com/w3c/webrtc-rtptransport/issues/11

Issue 12: Arbitrary RTP Header Extensions

58

Can a web app send arbitrary RTP header extensions? Like custom metadata?

● If new type of data channel:
○ No (must be embedded in RTP payload)

● If full piecemeal customization:
○ Maybe (if we want to customize RTP metadata outside

payload)
● If TPAC RtpTransport:

○ Yes

https://github.com/w3c/webrtc-rtptransport/issues/12

Issue 8: WHATWG Streams

59

We could spend hours debating the merits of WHATWG streams (or demerits).

Let's put this aside until we figure out the more important matters.

We could do any direction with or without WHATWG streams
(depending on how much pain we want to inflict upon everybody)

https://github.com/w3c/webrtc-rtptransport/issues/8

Back to the question of which path to take

60

RtpTransport

1. Review Current State
2. Addressing Comments from Last Time
3. Issues

a. Issue 9: Customizing piecemeal
b. Issue 10: SDP “Bumper lanes”
c. Issue 7: Support for SRTP/cryptex
d. Issue 13: Workers
e. Issue 8: WHATWG streams

4. Jan-Ivar's Slides
61

https://github.com/w3c/webrtc-rtptransport/issues/9
https://github.com/w3c/webrtc-rtptransport/issues/10
https://github.com/w3c/webrtc-rtptransport/issues/7
https://github.com/w3c/webrtc-rtptransport/issues/13
https://github.com/w3c/webrtc-rtptransport/issues/8

(Jan-Ivar) RtpTransport
More open issues

a. Issue 13: Workers
b. Issue 14: Update examples with standard APIs
c. Issue 15: Examples pipe multiple streams into a

single writable

62

https://github.com/w3c/webrtc-rtptransport/issues/13
https://github.com/w3c/webrtc-rtptransport/issues/14
https://github.com/w3c/webrtc-rtptransport/issues/15

(Jan-Ivar) WHATWG Streams

63

The RtpTransport explainer examples use streams. That’s good!
WebTransport and WebSocket/WebRTC already have two different data input APIs. Let’s not invent a third.

○ RTP could have back pressure on the send side, but do you really want it?

Yes, for the same reason
WebTransport datagrams have it:

1. Lets apps hook up pull-based
sources

2. Lets browser keep its off-process
send buffer filled for throughput

3. Our transform APIs already use it

https://github.com/w3c/webrtc-rtptransport/blob/main/explainer.md#example-send-with-custom-packetization

(Jan-Ivar) Issue 14/15: Examples pipe multiple streams into writable

64

The explainer examples won’t work. They use non-standard APIs and pipe multiple streams into one writable:

They also fail to address “worker-first” feedback from @jesup and myself, as well as Issue #13 Workers.

Same sink in a for-loop

(...But this packetizinG part is cool!)

https://github.com/w3c/webrtc-rtptransport/issues/14
https://github.com/w3c/webrtc-rtptransport/issues/15
https://github.com/w3c/webrtc-rtptransport/blob/main/explainer.md#example-send-with-custom-packetization
https://github.com/jesup
https://github.com/w3c/webrtc-rtptransport/issues/14

(Jan-Ivar) Issue 13/14/15: Update examples to use standard APIs

65

Updating them to spec solves workers & lets us move rtpTransport off main-thread to become a packetizer sink:

 // main.js
 const pc = new RTCPeerConnection();
 for (const sender of pc.getSenders()) {
 sender.transform = new RTCRtpScriptTransform(worker);
 }

 // worker.js
 onrtctransform = async ({transformer}) => {
 const {readable} = transformer;
 const {writable} = transformer.createRtpTransport();
 await readable.pipeThrough(new TransformStream({transform})).pipeTo(writable);

 function transform(frame, controller) {
 for (const packet of myPacketizer.packetize(frame)) {
 controller.enqueue(packet);
 }
 };

https://github.com/w3c/webrtc-rtptransport/issues/13
https://github.com/w3c/webrtc-rtptransport/issues/14
https://github.com/w3c/webrtc-rtptransport/issues/15

(Jan-Ivar) Issue 13/14/15: Media pipeline in Workers

66

Conceptually, all we’ve done is switch the output type from encodedFrame to packet. Much
like @alvestrand‘s JS codec/Lyra use case required input switched to unencoded Frame.

What if we let JS change the expected input and output types? (sender-side):

1. encodedFrame → encodedFrame (e2ee) (default)
2. encodedFrame → packet (add metadata)
3. Frame → encodedFrame (JS encoder)
4. Frame → packet (hold my beer!)

This closes the gap on Frame vs packet APIs, all while preserving a worker-first API.

Why transforms?

We built a pipeline into the browser, and the idea that it would be accessible was not really a
central idea when building it. This lets the entire pipeline be accessible at different points, off
main-thread.

https://github.com/w3c/webrtc-rtptransport/issues/13
https://github.com/w3c/webrtc-rtptransport/issues/14
https://github.com/w3c/webrtc-rtptransport/issues/15
https://github.com/alvestrand
https://www.meetecho.com/blog/playing-with-lyra/

(Jan-Ivar) Issue 13/14/15: WebCodecs + WebRTC

67

Two more use cases (sender-side):

1. JS → encodedFrame (WebCodecs)
2. JS → packet (WebCodecs)

Why? Because people will (probably) ask for it.

Does this break with transforms?

Yes, but short of transferring RTCPeerConnection, any API is going to be a retrofit. E.g.

 // main.js
 sender.source = new RTCRtpScriptEncoder(worker); // mutually exclusive w/sender.strack

 // worker.js
 onrtcencode = async ({transformer: {writable}}) => {
 await myData().pipeThrough(new EncodeVideoStream({codec: "vp8"})).pipeTo(writable);

Or is just overloading sender.transform simpler? What about SFrameTransform?

Perfect API

https://github.com/w3c/webrtc-rtptransport/issues/13
https://github.com/w3c/webrtc-rtptransport/issues/14
https://github.com/w3c/webrtc-rtptransport/issues/15

Discussion (End Time: 09:50)
●

68

Wrapup and Next Steps
Start Time: 09:50 AM
End Time: 10:00 AM

69

Title Goes Here
● Content goes here

70

Thank you

Special thanks to:

WG Participants, Editors & Chairs

71

PR 123: Use Cases Removed
● Church services, Webinars and Town Hall meetings removed

○ These use cases typically do not require ultra low latency
■ Broadcast often handled by conventional streaming technology (e.g. LL-HLS)
■ Fanout can be addressed using RTCDataChannel (e.g.Peer5).
■ RTCDataChannel requirements (e.g. worker support) covered in Section 3.1: File

Sharing.
● Sporting events also removed.

○ While this requires low latency and feedback, it also needs content protection.
■ CMAF streaming can be addressed by MoQ or other ULL streaming protocol.
■ Fanout can be addressed using unreliable/unordered RTCDataChannel with custom FEC.
■ RTCDataChannel requirements (e.g. worker support) covered in Section 3.1: File Sharing.
■ Participant feedback (cheers) handled via WebRTC?
■ Content protection requires CMAF, absent DRM support for encodedChunks:

● Issue 41: Support for content protection
● https://rawgit.com/wolenetz/media-source/mse-for-webcodecs-draft/media-so

urce-respec.html#webcodecs-based

72

https://github.com/w3c/webrtc-nv-use-cases/pull/124
https://github.com/w3c/webcodecs/issues/41
https://rawgit.com/wolenetz/media-source/mse-for-webcodecs-draft/media-source-respec.html#webcodecs-based
https://rawgit.com/wolenetz/media-source/mse-for-webcodecs-draft/media-source-respec.html#webcodecs-based

