
W3C WebRTC
WG Meeting

April 18, 2023
8 AM - 10 AM

Chairs: Bernard Aboba
Harald Alvestrand
Jan-Ivar Bruaroey 1

W3C WG IPR Policy
● This group abides by the W3C Patent Policy

https://www.w3.org/Consortium/Patent-Policy/
● Only people and companies listed at

https://www.w3.org/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

2

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!
● Welcome to the April 2023 interim meeting of

the W3C WebRTC WG, at which we will cover:
○ Grab Bag, RtpTransport, IceController, Playout-Delay

● Future meetings:
○ May 16
○ June 27
○ July 18
○ September 19
○ October 17
○ November 21
○ December 12

3

https://www.w3.org/2011/04/webrtc/wiki/Main_Page#Meetings
https://www.w3.org/2011/04/webrtc/wiki/May_16_2023
https://www.w3.org/2011/04/webrtc/wiki/June_27_2023
https://www.w3.org/2011/04/webrtc/wiki/July_18_2023
https://www.w3.org/2011/04/webrtc/wiki/September_19_2023
https://www.w3.org/2011/04/webrtc/wiki/October_17_2023
https://www.w3.org/2011/04/webrtc/wiki/November_21_2023
https://www.w3.org/2011/04/webrtc/wiki/December_12_2023

About this Virtual Meeting
● Meeting info:

○ https://www.w3.org/2011/04/webrtc/wiki/April_18_2023
● Link to latest drafts:

○ https://w3c.github.io/mediacapture-main/
○ https://w3c.github.io/mediacapture-extensions/
○ https://w3c.github.io/mediacapture-image/
○ https://w3c.github.io/mediacapture-output/
○ https://w3c.github.io/mediacapture-screen-share/
○ https://w3c.github.io/mediacapture-record/
○ https://w3c.github.io/webrtc-pc/
○ https://w3c.github.io/webrtc-extensions/
○ https://w3c.github.io/webrtc-stats/
○ https://w3c.github.io/mst-content-hint/
○ https://w3c.github.io/webrtc-priority/
○ https://w3c.github.io/webrtc-nv-use-cases/
○ https://github.com/w3c/webrtc-encoded-transform
○ https://github.com/w3c/mediacapture-transform
○ https://github.com/w3c/webrtc-svc
○ https://github.com/w3c/webrtc-ice

● Link to Slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● The meeting is (still) being recorded. The recording will be public.
● Volunteers for note taking? 4

https://www.w3.org/2011/04/webrtc/wiki/April_18_2023
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-extensions/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions/
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/mst-content-hint/
https://w3c.github.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://github.com/w3c/webrtc-encoded-transform
https://github.com/w3c/mediacapture-transform
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://www.w3.org/2011/04/webrtc/wiki/April_18_2023
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

W3C Code of Conduct
● This meeting operates under W3C Code of Ethics and

Professional Conduct

● We're all passionate about improving WebRTC and the
Web, but let's all keep the conversations cordial and
professional

5

https://www.w3.org/Consortium/cepc/
https://www.w3.org/Consortium/cepc/

Virtual Interim Meeting Tips
This session is (still) being recorded

● Click to get into the speaker queue.
● Click to get out of the speaker queue.
● Please wait for microphone access to be granted before

speaking.
● If you jump the speaker queue, you will be muted.
● Please use headphones when speaking to avoid echo.
● Please state your full name before speaking.
● Poll mechanism may be used to gauge the “sense of the

room”.

6

Understanding Document Status
● Hosting within the W3C repo does not imply adoption by the

WG.
○ WG adoption requires a Call for Adoption (CfA) on the

mailing list.
● Editor’s drafts do not represent WG consensus.

○ WG drafts do imply consensus, once they’re confirmed
by a Call for Consensus (CfC) on the mailing list.

○ Possible to merge PRs that may lack consensus, if a
note is attached indicating controversy.

7

To Harald, Peter and Sameer

8

Issues for Discussion Today

● 08:10 - 08:40 AM Grab Bag
● 08:40 - 09:10 AM RtpTransport (Peter)
● 09:10 - 09:40 AM IceController (Sameer & Peter)
● 09:40 - 09:55 AM playoutDelay (Jan-Ivar)
● 09:55 - 10:00 AM Wrapup and Next Steps (Chairs)

Time control:
● A warning will be given 2 minutes before time is up.
● Once time has elapsed we will move on to the next item.

9

Grab Bag
Start Time: 08:10 AM
End Time: 08:40 AM

10

For Discussion Today

● PR 147: Add RTCRtpEncodingParameters.codec to change the active codec (Florent)
● Stats/571: RTX and FEC stats are incomplete (Fippo)
● Issue 146: Exposing decode errors / SW fallback as an Event (Bernard)
● Issue 170: Incompatible SVC Metadata (Bernard)
● Issue 93: MediaStreamTrack audio delay/glitch capture stats (Henrik)
● PR 173: Add presentationTimeStamp to RTCEncodedVideoFrameMetaData

(Tony)

11

https://github.com/w3c/webrtc-extensions/pull/147
https://github.com/w3c/webrtc-stats/issues/751
https://github.com/w3c/webrtc-extensions/issues/146
https://github.com/w3c/webrtc-encoded-transform/issues/170
https://github.com/w3c/mediacapture-extensions/issues/93
https://github.com/w3c/webrtc-encoded-transform/pull/173

● As previously discussed in previous meetings PR 147 is being worked on to add
support for an API to change the codec used for an encoding using
setParameters().

● The proposed API changes RTCRtpEncodingParameters, it will impact both video
and audio sender

● It might not have been clear if it impacted non-simulcast usage or audio. The intent is to
make it work with both. Use case: change codec without renegotiation. Any objections?

 partial dictionary RTCRtpEncodingParameters {
 RTCRtpCodec codec;
 }

PR 147: Add RTCRtpEncodingParameters.codec to change the active
codec (Florent)

12

https://github.com/w3c/webrtc-extensions/pull/147

● RTX: outbound-rtp has retransmittedBytesSent
○ but no corresponding inbound-rtp value

● FEC: inbound-rtp has fecPacketsReceived
○ outbound-rtp has has corresponding counter only in provisional stats
○ no fecBytesReceived either, important e.g. for FlexFEC bitrate

● Proposal:
○ add retransmittedPacketsReceived and retransmittedBytesReceived to

inbound-rtp
○ add fecPacketsSent and fecBytesSent to outbound-rtp
○ add fecBytesReceived to inbound-rtp
○ mark as “ready for PR”, merge once we have at least one implementation

Stats/751: RTX and FEC stats are incomplete (Fippo)

13

https://w3c.github.io/webrtc-provisional-stats/#dom-rtcoutboundrtpstreamstats-fecpacketssent
https://github.com/w3c/webrtc-stats/issues/751

● As discussed in the MEDIA WG it would be useful to distinguish between:
○ Data error: the encoded chunk fed to the decoder could not be decoded.

■ Hardware decoders are more strict than software decoders, so a software decoder
might not error on the same input.

■ Application can failover to software.
● Developer needs to capture bitstream & investigate the interop issue.
● Nothing actionable for the user.

○ Resource problem: the hardware decoder is unavailable.
■ Hardware resources might have been allocated to another application, or might be

unavailable for some other reason (GPU crash).
■ Advice could be surfaced to the user (e.g. “Another application is affecting

performance. Please quit other applications.”).
■ Application might be able to re-acquire resources.

● Proposal: Mark as “Ready for PR”?

Issue 146: Exposing decode errors / SW fallback as an Event (Bernard)

14

https://www.w3.org/2023/04/11-mediawg-minutes.html#t01
https://github.com/w3c/webrtc-extensions/issues/146

● When spatial scalability modes are selected, the sender (or SFU) can drop layers
at any time.

● However, if the sender (or SFU) drops a spatial layer, how can it be added back?
○ Sender or SFU cannot just send subsequent frames at the same spatial layer.

■ Subsequent frames depend on previous frames at the same spatial layer,
so they are not decodable.

■ Even a frame whose dependencies have been received may not be
decodable.
● Decodability requires an unbroken chain of dependencies.

○ Receiver needs to quickly determine:
■ Is a received frame decodable?
■ Is a received frame necessary for the desired resolution/framerate

(decode target)?

Issue 170: Incompatible SVC Metadata (Bernard)

15

https://github.com/w3c/webrtc-encoded-transform/issues/170

Issue 170: SVC Metadata (cont’d)

16

Sender or SFU Drops
Spatial Extension
Frame

Not
decodable

https://github.com/w3c/webrtc-encoded-transform/issues/170

Issue 170: SVC Metadata (cont’d)

17

Sender or SFU Drops

Spatial Extension Frame

Received but
not decodable

Received but
not decodable

https://github.com/w3c/webrtc-encoded-transform/issues/170

Issue 170: SVC Metadata (cont’d)

18

Received but
not relevant to
decode target

Received but
not relevant to
decode target

Received but
not relevant to
decode target

Received but
not relevant to
decode target

https://github.com/w3c/webrtc-encoded-transform/issues/170

● Problem: RTCEncodedVideoFrameMetadata is:
○ Insufficient to support spatial scalability

■ Does not include chain info or decode targets
○ Incompatible with WebCodecs

Issue 170: SVC Metadata (cont’d)

19

https://github.com/w3c/webrtc-encoded-transform/issues/170

● Previous discussion in WEBRTC WG
○ Submit a WebCodecs PR, bring solution back to WEBRTC WG.

● Discussion in MEDIA WG
○ PR 654: Extend EncodedVideoFrameMetadata for SVC
○ Detailed proposal

○ frameNumber, dependencies should be unsigned long
○ WebCodecs: what is the state of implementation in Chromium?

■ Peter investigated.
○ Encoded Transform: Have dependencies, spatialIndex and temporalIndex been

implemented? If not, should we remove them?

Issue 170: SVC Metadata (cont’d)

20

https://github.com/w3c/webcodecs/pull/654
https://docs.google.com/document/d/1O6kxAQPLWhCRHkH-6zutcqEUOUWRS6NFM2CQAvi1VTg/
https://github.com/w3c/webrtc-encoded-transform/issues/170

Audio capture stats were recently added in getStats()’s RTCAudioSourceStats:

double droppedSamplesDuration;
unsigned long droppedSamplesEvents;
double totalCaptureDelay;
unsigned long long totalSamplesCaptured;

RTCAudioSourceStats are only present when a MediaStreamTrack is attached to an
RTCRtpSender. These audio capture metrics are “Only applicable if this media source
is backed by an audio capture device.”

Important capture quality metrics not available elsewhere:

● Allows calculating glitches in captured audio:
delta droppedSamplesDuration / delta totalSamplesDuration

● Allows calculating average capture delay:
delta totalCaptureDelay / delta totalSamplesCaptured

Issue 93: MediaStreamTrack audio delay/glitch capture stats (Henrik)

21

https://github.com/w3c/mediacapture-extensions/issues/93

Issue webrtc-stats#741 was filed, making the metrics Feature at Risk because:

1. getUserMedia() is frequently used outside of WebRTC, so WebRTC getStats() is a bad
location to put these metrics.

2. We should talk about audio frames, not audio samples (e.g. multi-channel).
● As per terminology section, the stats spec actually means “audio frames” when it says

“audio samples”. We should say what we mean here: audio frames.
3. It was not obvious why audio may be dropped, so we should clarify that this happens when

audio is not processed in a timely manner.

MediaStreamTrack.getFrameStats() was recently added for video capture metrics.
There is a need to have track audio capture metrics as well. Proposal:

1. Mark “ready for PR” to move capture metrics to MediaStreamTrack and add clarifications.
2. track.getFrameStats(), track.getAudioStats(), track.getStats()?

Issue 93: MediaStreamTrack audio delay/glitch capture stats (Henrik)

22

https://github.com/w3c/webrtc-stats/issues/741
https://w3c.github.io/webrtc-stats/#terminology
https://developer.mozilla.org/en-US/docs/Web/Media/Formats/Audio_concepts#audio_data_format_and_structure
https://github.com/w3c/mediacapture-extensions/issues/93

PR 173 adding presentationTime to RTCEncodedVideoFrameMetadata
(Tony)

● Scenario: Web App doing both Raw transforms and Encoded transforms on a
local video track sent over a PC
○ For a given encoded frame, which (transformed) raw frame does it

correspond to?
● Provided in WebCodecs via EncodedVideoChunk.timestamp and

VideoFrame.timestamp - matching presentation timestamps
● RTCEncodedFrame has a `timestamp`, alas the RTP timestamp
● => Can we add the presentation timestamp to RTCEVFMetadata, to match

VideoFrame.timestamp?

23

https://github.com/w3c/webrtc-encoded-transform/pull/173

Discussion (End Time: 08:40)
●

24

RtpTransport (Peter Thatcher)
Start Time: 08:40 AM
End Time: 09:10 AM

25

WebRTC Combines Media and Transport

(https://commons.wikimedia.org/wiki/File:Antoon_Claeissens_-_The_Judgement_of_Solomon_-_WGA04956.jpg)

WebRTC

https://commons.wikimedia.org/wiki/File:Antoon_Claeissens_-_The_Judgement_of_Solomon_-_WGA04956.jpg

● Pros
○ Much of the time, “it just works”.

● Cons:
○ Difficult to do things that can’t be expressed in SDP

■ Control of encoding parameters (e.g. screen content coding)
■ Differential resilience (e.g. RTX/FEC/RED only for base layer)
■ Custom resilience (e.g. support for custom FEC)
■ Controlling and monitoring hardware acceleration (encode/decode)

○ Difficult to support bleeding edge codecs
■ Bring your own audio codec (BYOC)
■ Video codecs already supported in low-level APIs (e.g. receiving HEVC)
■ Codecs that require new RTCP messages (e.g. LRR and VP9/AV1)

The Combination has Pros and Cons…

27

TransportMedia

What if we separated the two halves?

TransportMedia

SRTP/SRTCP
Packets

Raw/Decoded
Media

Encoded
Media

Parsed
RTP/RTCP

TransportMedia

SRTP/SRTCP
Packets

Raw/Decoded
Media

Encoded
Media

Parsed
RTP/RTCP

App

TransportMedia

SRTP/SRTCP
Packets

Raw/Decoded
Media

Encoded
Media

Parsed
RTP/RTCP

Feedback

bitrates

estimated
bitratesApp

In this presentation we will focus on the
RTPTransport.

RtpTransport
● Sends and receives RTP/RTCP
● Encrypted
● Congestion controlled
● RTP sender API is "stream of packets in; stream of packets out on

the wire"
● RTP receiver API is “stream of packets received on the wire,

stream of packets out”
● Supports workers
● Can be combined with WebCodecs
● Can be constructed from a DtlsTransport

○ DtlsTransport can come from an RTCPeerConnection negotiating
datachannel-only

○ Also possible to construct a stand-alone DtlsTransport from an IceTransport.

Relationship to RTCPeerConnection
An RtpTransport is constructed with a DtlsTransport, which currently requires a PeerConnection
with SCTP data channels, which requires some SDP (although data-channel-only SDP is far more
simple than RTP SDP). Here is how we could fix that (when combined with the new IceTransport
APIs):

[Constructor(RTCIceTransport transport, sequence<RTCCertificate> certificates), Exposed=Window]

partial interface RTCDtlsTransport {

 undefined start(RTCDtlsParameters remoteParameters);

 undefined stop();

};

dictionary RTCDtlsParameters {

 RTCDtlsRole role = "auto";

 required sequence<RTCDtlsFingerprint> fingerprints;

};

Relationship To WebCodecs

WebCodecs can be used with RtpTransport.
You do your own packetization, jitter buffer, and
rate adaptation

Compared to WebTransport

If you squint, RtpTransport looks a lot like
WebTransport with datagrams.
But it can also be p2p, which WebTransport
cannot (yet?).
And it has good latency-sensitive congestion
control which WebTransport does not (yet?)

NV07

“A user agent can receive audio/video without
requiring construction of a corresponding
sender object”

● App can create RtpTransport without an
RTCPeerConnection.

NV08
“It is possible to select the sending and/or receiving codec
as well as rtcp parameters and header extensions without
negotiation.”

● App can control RTP header extensions sent/received
by RtpTransport without an RTCPeerConnection.

● App can directly control RTCP control messages
sent/received by RtpTransport without an
RTCPeerConnection

NV09

 “The user agent must be able to control robustness (RTX,
RED, FEC) applied to individual simulcast and SVC layers.”

● App can directly control RTX, RED, and FEC using the
RtpTransport for all RTP packets, including those for
different layers.

● App can also do custom forms of RTX, RED, and FEC.

NV15

 “The application must be able to take steps to ensure
a low and consistent latency for audio, video and data
under varying network conditions. This may include
tweaking of transport parameters for both media and
data.”

● App can know estimated bitrate of RtpTransport
● App can send and receive data with RtpTransport

NV38 (Non-consensus)
"RtpAudioSender and RtpVideoReceiver have a control for
the minimum and maximum jitter buffer delay. If the web
app wishes, it could set the maximum to 0, which disables
the jitter buffer, and then run its own jitter buffer before
providing inputs. "

● App can directly set min and max jitter buffer delay.
○ RTPTransport receiver pipeThrough Jitter Buffer TransformStream

which can be configured for min/max delay.

NV39 (Non-consensus)
“A user-agent must be able to forward media received from a peer to
another peer. Applications require access to encoded chunk metadata
as well as information from the RTP header to provide for timing,
media configuration and congestion control. This includes a
mechanism for a relaying peer to obtain a bandwidth estimate.”

● App can directly access encoded data and metadata from RtpTransport
● App can know estimated bitrate of RtpTransport
● App can modify and send RTP packets from one RtpTransport to others

NV40 (Non-consensus)

“An application can create an outgoing
WebRTC connection without activating an
encoder.”
● App can create an RtpTransport without

creating an AudioSender/VideoSender

NV43 (Non-consensus)

“The application can modify metadata on
outgoing frames so that they fit smoothly within
the expected sequence of timestamps and
sequence numbers.”
● App can directly control metadata of sent

using RTP transport.

WebIDL for RtpTransport
interface RtpTransport {

 constructor(DtlsTransport dtlsTransport, RtpTransportParameters parameters = {});

 Promise<RtpSentPacket> sendRtpPacket(RtpPacketInit rtpPacket);

 attribute eventhandler onrtppacketreceived; // of RtpReceivedPacket

 Promise<void> sendRtcpPacket(RtcpPacketInit rtcpPacket);

 attribute eventhandler onrtcppacketreceived; // or ReceivedRtcpPacket

 readonly attribute unsigned long targetSendRate; // bps

 attribute eventhandler ontargetsendratechanged;

}

RtpTransport example (send)
let peerConnection = …;

let dtlsTransport = peerConnection.getTransceivers()[0].dtlsTransport;

let rtpTransport = new RtpTransport(dtlsTransport);

rtpTransport.sendRtpPacket({

 payloadType: 99,

 ssrc: 999,

 timestamp: …,

 payload: …,

 …

});

rtpTransport.sendRtcpPacket({

 …

});

RtpTransport example (rate control)
rtpTransport.ontargetsendratechanged = () => {

 // Allocate bitrate using rtpTransport.targetSendRate

};

TODO
● Discuss/define the Media side

Questions
Is this a good direction to go?

Discussion (End Time: 09:10)
●

49

IceController (Sameer & Peter)
Start Time: 09:10 AM
End Time: 09:40 AM

50

WebRTC ICE
improvements

Incremental this time

Since Last Time

● 1 proposal with lots of common ground
● Split into many increments
● Meets all the NV requirements

52

Order of incremental improvements

● Prevent removal of candidate pairs
● Remove candidate pairs
● Control selection of candidate pair
● (?) Observe candidate pair states
● Observe result/RTT of outgoing checks
● Control frequency of outgoing checks of particular candidate pairs
● Prevent outgoing checks of particular candidate pairs
● Control order and timing of outgoing checks
● Observe presence of not of incoming checks or media for particular candidate pairs
● Gather local candidates for new network interfaces
● Re-gather local candidates of previously failed network interfaces
● Prevent removal of local candidates
● Remove local candidates
● Construct IceTransport without PeerConnection
● Support forking

● Prevent removal of candidate pairs
● Remove candidate pairs
● Control selection of candidate pair
● (?) Observe candidate pair states
● Observe result/RTT of outgoing checks
● Control frequency of outgoing checks of particular candidate pairs
● Prevent outgoing checks of particular candidate pairs
● Control order and timing of outgoing checks
● Observe presence of not of incoming checks or media for particular candidate pairs
● Gather local candidates for new network interfaces
● Re-gather local candidates of previously failed network interfaces
● Prevent removal of local candidates
● Remove local candidates
● Construct IceTransport without PeerConnection
● Support forking

N04 - maintain multiple candidate pairs

● Prevent removal of candidate pairs
● Remove candidate pairs
● Control selection of candidate pair
● (?) Observe candidate pair states
● Observe result/RTT of outgoing checks
● Control frequency of outgoing checks of particular candidate pairs
● Prevent outgoing checks of particular candidate pairs
● Control order and timing of outgoing checks
● Observe presence of not of incoming checks or media for particular candidate pairs
● Gather local candidates for new network interfaces
● Re-gather local candidates of previously failed network interfaces
● Prevent removal of local candidates
● Remove local candidates
● Construct IceTransport without PeerConnection
● Support forking

N15 - ensure a low and consistent latency

● Prevent removal of candidate pairs
● Remove candidate pairs
● Control selection of candidate pair
● (?) Observe candidate pair states
● Observe result/RTT of outgoing checks
● Control frequency of outgoing checks of particular candidate pairs
● Prevent outgoing checks of particular candidate pairs
● Control order and timing of outgoing checks
● Observe presence of not of incoming checks or media for particular candidate pairs
● Gather local candidates for new network interfaces
● Re-gather local candidates of previously failed network interfaces
● Prevent removal of local candidates
● Remove local candidates
● Construct IceTransport without PeerConnection
● Support forking

N14 - minimize ICE connectivity checks

● Prevent removal of candidate pairs
● Remove candidate pairs
● Control selection of candidate pair
● (?) Observe candidate pair states
● Observe result/RTT of outgoing checks
● Control frequency of outgoing checks of particular candidate pairs
● Prevent outgoing checks of particular candidate pairs
● Control order and timing of outgoing checks
● Observe presence of not of incoming checks or media for particular candidate pairs
● Gather local candidates for new network interfaces
● Re-gather local candidates of previously failed network interfaces
● Prevent removal of local candidates
● Remove local candidates
● Construct IceTransport without PeerConnection
● Support forking

N01 - control candidate gathering

● Prevent removal of candidate pairs
● Remove candidate pairs
● Control selection of candidate pair
● (?) Observe candidate pair states
● Observe result/RTT of outgoing checks
● Control frequency of outgoing checks of particular candidate pairs
● Prevent outgoing checks of particular candidate pairs
● Control order and timing of outgoing checks
● Observe presence of not of incoming checks or media for particular candidate pairs
● Gather local candidates for new network interfaces
● Re-gather local candidates of previously failed network interfaces
● Prevent removal of local candidates
● Remove local candidates
● Construct IceTransport without PeerConnection
● Support forking

N01 - control candidate pruning

● Prevent removal of candidate pairs
● Remove candidate pairs
● Control selection of candidate pair
● (?) Observe candidate pair states
● Observe result/RTT of outgoing checks
● Control frequency of outgoing checks of particular candidate pairs
● Prevent outgoing checks of particular candidate pairs
● Control order and timing of outgoing checks
● Observe presence of not of incoming checks or media for particular candidate pairs
● Gather local candidates for new network interfaces
● Re-gather local candidates of previously failed network interfaces
● Prevent removal of local candidates
● Remove local candidates
● Construct IceTransport without PeerConnection
● Support forking

N02 - establish multiple connections

Prevent Candidate Pair Removal

Option A (cancellable event)

partial interface RTCIceTransport {

 attribute EventHandler oncandidatepairremoved;

};

interface IceCandidatePairRemovedEvent : Event {

 readonly attribute RTCIceCandidatePair pair;

 readonly attribute bool cancellable;

};

Option B (turn on/off automatic behavior)

partial interface RTCIceTransport {

 attribute EventHandler oncandidatepairadded;

};

partial interface RTCIceCandidatePair {

 attribute bool removable; // default is true

}

Remove Candidate Pairs

partial interface RTCIceTransport {

 undefined removeCandidatePairs(sequence<RTCIceCandidatePair> pairs);

};

Control Selection of Candidate Pair

partial interface RTCIceTransport {

 Promise<undefined> setSelectedCandidatePair(RTCIceCandidatePair pair);

};

(?) Observe Candidate Pair State Changes

partial interface RTCIceCandidatePair {

 readonly attribute RTCIceCandidatePairState state;

 attribute EventHandler onstatechange;

};

// Almost the same as RTCIceConnectionState

enum RTCIceCandidatePairState {

 "new", "checking", "connected", "disconnected", "failed", "closed",

 "paused",

}

Observe result/RTT of outgoing checks

partial interface RTCIceTransport {

 attribute EventHandler onicechecksentandresolved; // TODO: better name

};

// Better name

interface RTCIceCheckSentAndResolvedEvent : Event {
 readonly attribute RTCIceCandidatePair candidatePair;

 readonly attribute DOMHighResTimeStamp checkSent;

 readonly attribute DOMHighResTimeStamp? responseReceived;

 readonly attribute IceCheckErrorType? error;

};

Control frequency of outgoing checks of candidate pairs

partial interface RTCIceCandidatePair {

 attribute unsigned long checkInterval; // milliseconds

};

Prevent outgoing checks of particular candidate pairs

Option A (cancellable event)

partial interface RTCIceTransport {

 attribute EventHandler onicecheckproposed;

};

// Cancellable

interface RTCIceCheckProposedEvent : Event {

 readonly attribute RTCIceCandidatePair pair;

};

Option B (turn on/off automatic behavior)

partial interface RTCIceCandidatePair {

 attribute bool checkable; // default true

}

Control order and timing of outgoing checks

partial interface RTCIceCandidatePair {

 undefined sendCheck(optional long timeout);

};

Observe presence of incoming checks or media

partial interface RTCIceCandidatePair {

 readonly attribute DOMHighResTimeStamp? lastCheckReceived;

 readonly attribute DOMHighResTimeStamp? lastPacketReceived;

};

Gather local candidates for new network interfaces

Option A (incompatible with ICE forking)

partial interface RTCIceTransport {

 attribute bool gatherContinuallyCandidates;

};

Option B (compatible with ICE forking)

partial interface RTCIceTransport {

 readonly attribute RTCIceGatherer gatherer;

}

interface RTCIceGatherer {

 attribute bool gatherContinually;

};

Re-gather candidates of previously failed network interfaces

Option A (incompatible with ICE forking)

partial interface RTCIceTransport {

 Promise<undefined> gather(IceGatherParameters);

};

dictionary IceGatherParameters {

 bool regatherNetworkInterfacesInUse = false;

};

Option B (compatiable with ICE forking)

partial interface RTCIceTransport {

 readonly attribute RTCIceGatherer gatherer;

}

interface RTCIceGatherer {

 Promise<undefined> gather(IceGatherParameters);

};

dictionary IceGatherParameters {

 bool regatherNetworkInterfacesInUse = false;

};

Prevent removal of local candidates

Option A (cancellable event; no forking)

partial interface RTCIceTransport {

 attribute EventHandler onlocalcandidateremoved;

};

// Cancellable

interface RTCIceCandidateRemovedEvent : Event {

 readonly attribute RTCIceCandidate candidate;

};

Option B (turn on/off automatic behavior; forking)

partial interface RTCIceGatherer {

 attribute EventHandler oncandidateadded;

 attribute EventHandler onlocalcandidateremoved;

 sequence<RTCLocalIceCandidate> getCandidates();

}

interface RTCLocalIceCandidate : RTCIceCandidate {

 attribute bool removeable; // default true

}

Remove local candidates

Option A (incompatible with ICE forking)

partial interface RTCIceTransport {

 attribute EventHandler onlocalcandidateadded;

 undefined removeLocalCandidates(

 sequence<RTCIceCandidate>);

}

Option B (compatible with ICE forking)

partial interface RTCIceGatherer {

 undefined removeCandidates(

 sequence<RTCLocalIceCandidate>);

}

Construct and use without PeerConnection

partial interface IceTransport {

 constructor();

 undefined start(RTCIceTransportParameters parameters,
 RTCIceParameters remoteParameters);

 undefined addRemoteCandidate(RTCIceRemoteCandidateInit);

}

dictionary RTCIceTransportParameters {

 RTCIceGatherer gatherer;

 required RTCIceRole role;

}

dictionary RTCIceRemoteCandidateInit {

 … same fields as RTCIceCandidate;

}

partial interface IceGatherer {

 constructor();

 RTCIceParameters getLocalParameters();

 undefined gather(IceGatherParameters parameters);

}

partial dictionary IceGatherParameters {

 sequence<RTCIceServer> iceServers = [];

 RTCIceTransportPolicy iceTransportPolicy = "all";

}

Ice Forking

// For use with PeerConnection only

// Without PeerConnection, nothing more is needed

partial dictionary RTCConfiguration {

 IceGatherer iceGatherer;

}

Summary

● Many small, incremental improvements are each valuable, and make
for a great whole.

● Nothing very difficult to implement or use.
● Does almost everything anyone has ever asked for.

Questions

● Does the Working Group want to pursue this direction?
● Use cancellable events or no?
● Leave the door open to ICE forking (IceGather) or no?
● Can we change an IceCandidatePair from a dictionary to an interface?

All combined (with PeerConnection)
partial interface RTCIceTransport {
 readonly attribute RTCIceGatherer gatherer;
 undefined removeCandidatePairs(sequence<IceCandidatePair>);
 Promise<undefined> setSelectedCandidatePair(IceCandidatePair);
 attribute EventHandler oncandidatepairadded;
 attribute EventHandler onicechecksentandresolved;
}

partial interface RTCIceCandidatePair {
 attribute bool removable;
 attribute unsigned long checkInterval;
 readonly attribute RTCIceCandidatePairState state;
 attribute EventHandler onstatechange;
 readonly attribute DOMHighResTimeStamp? lastCheckReceived;
 readonly attribute DOMHighResTimeStamp? lastPacketReceived;
}

dictionary RTCIceRemoteCandidateInit {
 … same fields as RTCIceCandidate …
}

enum RTCIceCandidatePairState {
 "new", "checking", "connected", "disconnected", "failed",
 "closed", "paused"
}

interface RTCIceGatherer {
 attribute bool gatherContinually;
 sequence<RTCLocalIceCandidate> getCandidates()
 undefined removeCandidates(sequence<RTCLocalIceCandidate>);
 attribute EventHandler oncandidateadded;
 attribute EventHandler oncandidateremoved;
}

interface RTCLocalIceCandidate : RTCIceCandidate {
 attribute bool removeable;
}

interface RTCIceCheckSentAndResolvedEvent : Event {
 readonly attribute RTCIceCandidatePair candidatePair;
 readonly attribute DOMHighResTimeStamp checkSent;
 readonly attribute DOMHighResTimeStamp? responseReceived;
 readonly attribute IceCheckErrorType? error;
}

All combined (without PeerConnection)
partial interface RTCIceTransport {
 constructor();
 undefined start(RTCIceTransportParameters parameters,
 RTCIceParameters remoteParameters);
 undefined removeCandidatePairs(sequence<IceCandidatePair>);
 Promise<undefined> setSelectedCandidatePair(IceCandidatePair);
 attribute EventHandler oncandidatepairadded;
 attribute EventHandler onicechecksentandresolved;
}

dictionary RTCIceTransportParameters {
 RTCIceGatherer gatherer;
 required RTCIceRole role;
}

partial interface RTCIceCandidatePair {
 attribute bool removable;
 attribute unsigned long checkInterval;
 readonly attribute RTCIceCandidatePairState state;
 attribute EventHandler onstatechange;
 readonly attribute DOMHighResTimeStamp? lastCheckReceived;
 readonly attribute DOMHighResTimeStamp? lastPacketReceived;
}

dictionary RTCIceRemoteCandidateInit {
 … same fields as RTCIceCandidate …
}

interface RTCIceGatherer {
 constructor();
 Promise<undefined> gather(IceGatherParameters);
 RTCIceParameters getLocalParameters();
 sequence<RTCLocalIceCandidate> getCandidates()
 undefined removeCandidates(sequence<RTCLocalIceCandidate>);
 attribute EventHandler oncandidateadded;
 attribute EventHandler oncandidateremoved;
}

dictionary IceGatherParameters: RTCIceParameters {
 sequence<RTCIceServer> iceServers = [];
 RTCIceTransportPolicy iceTransportPolicy = "all";
 bool regatherNetworkInterfacesInUse = false;
 bool gatherContinually = true;
}

interface RTCLocalIceCandidate : RTCIceCandidate {
 attribute bool removeable;
}

interface RTCIceCheckSentAndResolvedEvent : Event {
 readonly attribute RTCIceCandidatePair candidatePair;
 readonly attribute DOMHighResTimeStamp checkSent;
 readonly attribute DOMHighResTimeStamp? responseReceived;
 readonly attribute IceCheckErrorType? error;
}

enum RTCIceCandidatePairState {
 "new", "checking", "connected", "disconnected", "failed",
 "closed", "paused"
}

Discussion (End Time: 09:40)
●

79

playoutDelay (Jan-Ivar)
Start Time: 09:40 AM
End Time: 09:55 AM

80

Some open issues around playoutDelay (a.k.a. playoutDelayHint in Chrome):

● #157 Does playoutDelay of video affect jitter buffer of synced audio and vice versa?
● #156 Should we clarify playoutDelay value is jitter buffer depth?
● #155 playoutDelay should use milliseconds.
● #123 RTCRtpReceiver.playoutDelay...Hint or no Hint?
● #46 How does a developer decide on a value for playoutDelay ?
● #12 Testability of playoutDelayHint ←--- See here for most recent discussion.

Summary of concerns / insights from #12:

1. “Delay” is a measurement of a negative side-effect
2. Vague input (jitter buf + AV sync/playout path delay?)
3. Hard to test + confusing to implement (webrtc 15085

induced video delay outside jitter buffer wasting time)
4. Instead, the desirable positive goal is jitter-free media

Issue 156 et al.: playoutDelay (1/2) (Jan-Ivar)

81
Drag’o’meter

https://w3c.github.io/webrtc-extensions/#rtcrtpreceiver-playoutdelay-rtcrtpreceiver-interface
https://github.com/w3c/webrtc-extensions/issues/157
https://github.com/w3c/webrtc-extensions/issues/156
https://github.com/w3c/webrtc-extensions/issues/155
https://github.com/w3c/webrtc-extensions/issues/123
https://github.com/w3c/webrtc-extensions/issues/46
https://github.com/w3c/webrtc-extensions/issues/12
https://github.com/w3c/webrtc-extensions/issues/12
https://bugs.chromium.org/p/webrtc/issues/detail?id=15085
https://github.com/w3c/webrtc-extensions/issues/156

Instead, make the input value the target jitter buffer depth, and nothing more:

 receiver.jitterBufferDepth = 150; // in milliseconds* (double)

And compare to the gradually matching delay measurement from stats (fiddle):

 let lastInbound;
 while (true) {
 const stats = receiver.getStats();
 const inbound = [...stats.values()].find(({type}) => type == "inbound-rtp");
 console.log(`Jitter buffer delay = ${getJitterBufferDelayMs(inbound, lastInbound)} ms.`);
 lastInbound = inbound;
 await wait(1000);
 }

function getJitterBufferDelayMs(inbound, oldInbound) {
 if (!oldInbound) return 0;
 return ((inbound.jitterBufferDelay - oldInbound.jitterBufferDelay) /
 (inbound.jitterBufferEmittedCount - oldInbound.jitterBufferEmittedCount)
 * 1000).toFixed(2);
}

 * W3C Design Principle § 8.3. Use milliseconds for time measurement

Issue 156 et al.: playoutDelay (2/2) (Jan-Ivar)

82
Speedometer

https://w3c.github.io/webrtc-stats/#dom-rtcinboundrtpstreamstats-jitterbufferdelay
https://jsfiddle.net/jib1/0L6duga2/show
https://w3ctag.github.io/design-principles/#milliseconds
https://github.com/w3c/webrtc-extensions/issues/156

Discussion (End Time: 09:55)
●

83

Extra issues - time permitting
● Issue 39: Solve user agent camera/microphone double-mute
● Issue 263: CaptureStartFocusBehavior.no-focus-change is

misleading

84

https://github.com/w3c/mediacapture-extensions/issues/39
https://github.com/w3c/mediacapture-screen-share/issues/263

Issue 39: Solve user agent camera/microphone double-mute

85

https://github.com/w3c/mediacapture-extensions/issues/39

Issue 39: Solve user agent camera/microphone double-mute
● OS level camera indicator

○ Widely deployed: the green pill
→ Web sites tend to stop camera when muting

● OS level microphone indicator
○ Not as widely deployed (but still deployed in some OSes)

→ Web sites DO NOT tend to stop microphone when muting
○ Ability to detect whether user is speaking

■ kAUVoiceIOProperty_MutedSpeechActivityEventListener

● Proposal: Allow application to request mute/unmute of
camera/microphone capture

86

https://github.com/w3c/mediacapture-extensions/issues/39

Issue 39: Solve user agent camera/microphone double-mute
● MediaStreamTrack API

○ Promise requestMute/requestUnmute()
■ Mute the track’s source

● InputDeviceInfo API
○ Promise requestMute/requestUnmute()

■ Mute the device, similar to track’s source
● Navigator API

○ Promise requestCaptureMute/requestUnmute(kind)
■ Mute all capture devices of a web page

● requestMute MAY mute more than just the track’s source (up to UA)
● requestUnmute MAY prompt (up to UA)

87

https://github.com/w3c/mediacapture-extensions/issues/39

Issue 263: CaptureStartFocusBehavior.no-focus-change is misleading
● CaptureStartFocusBehavior getDisplayMedia option

○ “focus-captured-surface”: focus the user selected surface
○ “no-focus-change”: focus the capturing web application

● “no-focus-change” definition is based on a UA picker model, not
on OS level picker

88

https://github.com/w3c/mediacapture-screen-share/issues/263

Issue 263: CaptureStartFocusBehavior.no-focus-change is misleading
● Main proposal: introduce a new focus behavior value

○ “focus-capturing-application”
■ Equivalent to current “no-focus-change”

● What about “no-focus-change”?
○ Remove “no-focus-change”
○ Redefine “no-focus-change” as use the default focus behavior

89

https://github.com/w3c/mediacapture-screen-share/issues/263

Name that Mammal

90

Thank you

Special thanks to:

WG Participants, Editors, Chairs and The
Mammal of the MonthTM

91

