Open Screen Protocol

TPAC 2022 - September 16, 2022 Mark A. Foltz <u>mfoltz@google.com</u> / Google Inc.

Security Updates

Background

Open Screen Protocol includes an authentication sub-protocol for mutual authentication between agents.

This is important to prevent passive and active attackers from viewing/intercepting/modifying protocol messages.

Authentication

Authentication

Agent Certificates (Current)

- 1. 256-bit, 384-bit, or 521-bit ECDSA public key
- 2. Self-signed
- 3. Supporting certain signature algorithms
- 4. Valid for signing

The following X.509 v3 fields are to be set as follows:

Field	Value
Version Number	3
Serial Number	<fp></fp>
Signature Algorithm ID	One of the values listed above.
	CN = The model-name from the agent-info message.
Issuer Name	L = See note. ST = See note. C = See note.
Subject Name	CN = <fp>openscreenudp.local O = See note.</fp>
Subject Public Key Algorithm	Elliptic Curve Public Key
Certificate Key usage	Signing

Mandatory fields not mentioned above should be set according to [RFC5280].

The value <fp> above should be substituted with the <u>agent fingerprint</u> (as serialized in mDNS TXT).

"Agent Certificate has a circular dependency on itself"

The certificate serial number is its own fingerprint, making it impossible to compute the fingerprint value.

Proposal: Generate a serial number from a 32-bit random seed and a 32-bit counter.

<u>PR #293</u>: Add an algorithm for setting the agent certificate serial number

Issues <u>#218/#277</u>

#218: "Adjust cipher and signature algorithm preference list for hardware"

#277: "Consider removing support for P-521"

Mostly because of performance overheads on lower-end devices.

See this thread on mozilla.dev.security.policy

Issues #218/#277 (continued)

#218: "Adjust cipher and signature algorithm preference list for hardware"

#277: "Consider removing support for P-521"

Proposal: For ciphers, use TLS 1.3 list: AES-128, AES-256, ChaCha20. For signature schemes, require ecdsa_secp256r1_sha256 which is mandatory for TLS. Should we recommend ecdsa_secp384r1_sha384 for future compat?

<u>PR #295</u>: Remove P-521 curve from agent certificate requirements

<u>PR #297</u> (in progress): Simplify TLS requirements...

<u>Issue #278</u>

"Do not use Distinguished Name <in the Subject and Issuer names> to convey protocol details"

- 1. <u>RFC 6125</u> says how to set the commonName using a "SRV-ID"
- 2. Human readable text in the Distinguished Name is a problem. Instead use a random string.

Proposal: Set Issuer Name to a randomly generated string.

However, the SRV-ID includes the DNS-SD instance name, which violates #2...

Issues <u>#279/#280</u>

"Clarify the supported signature algorithms for certificates"

Signature algorithms and public key types in X.509 certs are represented by "Object IDs" like 1.2.840.10045.2.1 defined in <u>RFC 4580</u> & <u>RFC 5758</u>

These IDs have a binary encoding (DER, from X.690) and we can include that format as well.

<u>PR #288</u>: Fixes algorithm and signing fields in agent certificate.

Agent Certificates 2.0

- 1. 256-bit ECDSA public key
- 2. Self-signed
- 3. Supporting ecdsaWithSha256
- 4. Valid for signing

Field	Old Value	New Value
Serial	Agent fingerprint	<random> <counter></counter></random>
Signature	???	ecdsaWithSha256
Issuer DN	Based on model name	openscreen- <random></random>
Subject DN	<fp>openscreen udplocal</fp>	To be determined
Key Algorithm	256, 384, or 521	secp256r1
Usage	Signing	digitalSignature

"Certificates should have a maximum lifetime" - WebTransport is 2 weeks

- 1. Switch agent fingerprint from cert fingerprint to <u>SPKI</u> from RFC 7469.
- 2. Rotate entire certificates without redoing SPAKE-2?

Proposals:

- 1. <u>PR #301: Define the agent fingerprint as the SPKI.</u>
- 2. Key rotation is more complicated as agents will need to track multiple certificates per agent, verify certificate chains.

Media Capabilities

Background

After one agent connects to another, it can request audio and video decoding and rendering capabilities.

```
; type key 122
streaming-capabilities-request = {
   request
}
; type key 123
streaming-capabilities-response = {
   response
   1: streaming-capabilities
        ;streaming-capabilities
}
```

```
streaming-capabilities = {
    0: [* receive-audio-capability] ;
receive-audio
    1: [* receive-video-capability] ;
receive-video
    2: [* receive-data-capability] ;
receive-data
}
```

receive-video-capability

```
receive-video-capability = {
                                          format = {
```

}

```
0: format ; codec
```

```
0: string ; name
```

<snip>

```
1: [* format-parameter] ; parameters
```

```
? 6: [* string] ; color-gamuts
```

<snip>

}

Issue #233: What codec name to use?

- Resolved at the Joint Media WG/SSWG meeting in Jan 2022:
 - "We can use references in the WebCodecs registry for codec string details"
- <u>WebCodecs registry</u> lists most common audio and video codecs
 - VP8, VP9, AV1; AVC, HEVC
 - Opus, FLAC, vorbis; mp3, mp4a
- For non-listed codecs, agents can use an <u>RFC 6381</u> codec parameter
- PR #299: Reference WebCodecs registry for codec names.

Issue #194: HDR Capabilities

- Currently specify color-gamut
- Not sufficient to determine HDR metadata decoding capabilities
- Media Capabilities uses two additional attributes
 - <u>transfer-functions</u>
 - <u>hdr-metadata</u>
- Propose adding these fields to **receive-video-capability**
- PR #300: Add transfer-functions and hdr-metadata to video-capabilities.

SPAKE2 update

SPAKE2 RFC version 9 => version 26

- Terminology (variable names) have changed.
- The protocol described in the RFC is two round:
 - Alice and Bob exchange public values
 - Alice and Bob exchange confirmation values
- We can simplify the SPAKE2 protocol from 3 to 2 message types:
 - auth-spake2-handshake exchanges public values and coordinates PSK input
 - auth-spake2-confirmation exchanges confirmation values
- PR #294: Update for SPAKE2

Remaining v1-spec items

• Security

- Issue #242: Decide if CPACE in scope for v1
- Issue #282: Decide if key rotation is in scope for v1
- Issue #275: Update or drop TLS SNI
- Issue #278: Decide what subject name to use in the cert
- Other <u>security-tracker</u> feedback
- Other
 - Remote playback refinements / feature requests (~ 6 issues)
 - <u>Issue #132</u>: Refine behavior around private browsing mode

Issue #275

"TLS SNI requirement is incompatible with TLS SNI definition" (citing multiple RFCs)

TLS does not allow underscores in the SNI, so we can't use <fp>._openscreen._udp._local

- 1. Keep SNI, remove underscores
- 2. Come up with alternative SNI syntax
- 3. Remove SNI (may lose port sharing)

Issue #279

"The keyUsage name is digitalSignature, not signing"

RFC 5280 has a specific token for this.

Proposal:

1. Fix this.

Issue #210

"Describe encoding/decoding of PSK into numeric and QR codes."

We need a standardized way to turn a binary PSK into a characters or a QR code.

<TODO> Describe and/or screenshot examples

PR #296: Adds appendix with PSK specifications.

CPACE Update

- <u>Recommended by the CFRG</u> in March 2020.
- Computes a shared secret (intermediate key) with one round trip.
- The second version of the <u>Internet-Draft for CPACE</u> was published on 7/25/2021.
- There are two flavors (elliptic curves) that have different implementation properties.
- CPACE includes a shared "SID" parameter, whose properties <u>may be specified</u> by a Sep 2021 paper.
- There are several open source implementations, unsure how vetted they are.
- Can prepare a more detailed comparison with SPAKE2 for another meeting.