
Open Screen Protocol
TPAC 2022 - September 16, 2022
Mark A. Foltz
mfoltz@google.com / Google Inc.

mailto:mfoltz@google.com

Security Updates

Background

Open Screen Protocol includes an authentication sub-protocol for mutual
authentication between agents.

This is important to prevent passive and active attackers from
viewing/intercepting/modifying protocol messages.

Authentication

Alice BobX.509 Agent
Certificate

X.509 Agent
Certificate

TLS 1.3

🤝

Authentication

Alice BobAgent
Certificate

Agent
Certificate

SPAKE2

8573309

Agent Certificates
(Current)

1. 256-bit, 384-bit, or 521-bit
ECDSA public key

2. Self-signed
3. Supporting certain signature

algorithms
4. Valid for signing

Issue #276

“Agent Certificate has a circular dependency on itself”

The certificate serial number is its own fingerprint, making it impossible to
compute the fingerprint value.

Proposal: Generate a serial number from a 32-bit random seed and a 32-bit
counter.

PR #293: Add an algorithm for setting the agent certificate serial number

https://github.com/w3c/openscreenprotocol/issues/276
https://github.com/w3c/openscreenprotocol/pull/293

Issues #218/#277

#218: “Adjust cipher and signature algorithm preference list for hardware”

#277: “Consider removing support for P-521”

Mostly because of performance overheads on lower-end devices.

See this thread on mozilla.dev.security.policy

https://github.com/w3c/openscreenprotocol/issues/218
https://github.com/w3c/openscreenprotocol/issues/277
https://groups.google.com/g/mozilla.dev.security.policy/c/7O34-DmZeC8?pli=1

Issues #218/#277 (continued)

#218: “Adjust cipher and signature algorithm preference list for hardware”

#277: “Consider removing support for P-521”

Proposal: For ciphers, use TLS 1.3 list: AES-128, AES-256, ChaCha20. For
signature schemes, require ecdsa_secp256r1_sha256 which is mandatory for
TLS. Should we recommend ecdsa_secp384r1_sha384 for future compat?

PR #295: Remove P-521 curve from agent certificate requirements

PR #297 (in progress): Simplify TLS requirements…

https://github.com/w3c/openscreenprotocol/pull/295
https://github.com/w3c/openscreenprotocol/pull/297

Issue #278

“Do not use Distinguished Name <in the Subject and Issuer names> to convey
protocol details”

1. RFC 6125 says how to set the commonName using a “SRV-ID”
2. Human readable text in the Distinguished Name is a problem. Instead use

a random string.

Proposal: Set Issuer Name to a randomly generated string.

However, the SRV-ID includes the DNS-SD instance name, which violates #2…

https://github.com/w3c/openscreenprotocol/issues/278
https://datatracker.ietf.org/doc/draft-ietf-uta-use-san/

Issues #279/#280

“Clarify the supported signature algorithms for certificates”

Signature algorithms and public key types in X.509 certs are represented by
“Object IDs” like 1.2.840.10045.2.1 defined in RFC 4580 & RFC 5758

These IDs have a binary encoding (DER, from X.690) and we can include that
format as well.

PR #288: Fixes algorithm and signing fields in agent certificate.

https://github.com/w3c/openscreenprotocol/issues/279
https://github.com/w3c/openscreenprotocol/issues/280
https://www.rfc-editor.org/rfc/rfc5480
https://www.rfc-editor.org/rfc/rfc5758
https://www.itu.int/rec/T-REC-X.690-202102-I/en
https://github.com/w3c/openscreenprotocol/pull/288

Agent Certificates
2.0

1. 256-bit ECDSA public key
2. Self-signed
3. Supporting ecdsaWithSha256
4. Valid for signing

Field Old Value New Value

Serial Agent fingerprint <random>|<counter>

Signature ??? ecdsaWithSha256

Issuer DN Based on model name openscreen-<random>

Subject DN <fp>._openscreen._
udp._local

To be determined

Key Algorithm 256, 384, or 521 secp256r1

Usage Signing digitalSignature

Issue #282

“Certificates should have a maximum lifetime” - WebTransport is 2 weeks

1. Switch agent fingerprint from cert fingerprint to SPKI from RFC 7469.
2. Rotate entire certificates without redoing SPAKE-2?

Proposals:

1. PR #301: Define the agent fingerprint as the SPKI.
2. Key rotation is more complicated as agents will need to track multiple

certificates per agent, verify certificate chains.

https://github.com/w3c/openscreenprotocol/issues/282
https://github.com/w3c/webtransport/pull/100
https://www.rfc-editor.org/rfc/rfc7469#section-2.4
https://github.com/w3c/openscreenprotocol/pull/301

Media Capabilities

Background

After one agent connects to another, it can request audio and video decoding
and rendering capabilities.

; type key 122
streaming-capabilities-request = {
 request
}

; type key 123
streaming-capabilities-response = {
 response
 1: streaming-capabilities
 ;streaming-capabilities
}

streaming-capabilities = {
 0: [* receive-audio-capability] ;
receive-audio
 1: [* receive-video-capability] ;
receive-video
 2: [* receive-data-capability] ;
receive-data
}

receive-video-capability

receive-video-capability = {

 0: format ; codec

 <snip>

 ? 6: [* string] ; color-gamuts

 <snip>

}

format = {

 0: string ; name

 1: [* format-parameter] ; parameters

}

Issue #233: What codec name to use?

● Resolved at the Joint Media WG/SSWG meeting in Jan 2022:
○ “We can use references in the WebCodecs registry for codec string details”

● WebCodecs registry lists most common audio and video codecs
○ VP8, VP9, AV1; AVC, HEVC
○ Opus, FLAC, vorbis; mp3, mp4a

● For non-listed codecs, agents can use an RFC 6381 codec parameter
● PR #299: Reference WebCodecs registry for codec names.

https://github.com/w3c/openscreenprotocol/issues/233
https://w3c.github.io/webcodecs/codec_registry.html
https://www.rfc-editor.org/rfc/rfc6381#section-3
https://github.com/w3c/openscreenprotocol/pull/299

Issue #194: HDR Capabilities

● Currently specify color-gamut
● Not sufficient to determine HDR metadata decoding capabilities
● Media Capabilities uses two additional attributes

○ transfer-functions

○ hdr-metadata

● Propose adding these fields to receive-video-capability
● PR #300: Add transfer-functions and hdr-metadata to video-capabilities.

https://w3c.github.io/media-capabilities/#transferfunction
https://w3c.github.io/media-capabilities/#hdrmetadatatype
https://github.com/w3c/openscreenprotocol/pull/300

SPAKE2 update

SPAKE2 RFC version 9 => version 26

● Terminology (variable names) have changed.
● The protocol described in the RFC is two round:

○ Alice and Bob exchange public values
○ Alice and Bob exchange confirmation values

● We can simplify the SPAKE2 protocol from 3 to 2 message types:
○ auth-spake2-handshake exchanges public values and coordinates PSK input
○ auth-spake2-confirmation exchanges confirmation values

● PR #294: Update for SPAKE2

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-spake2-26
https://github.com/w3c/openscreenprotocol/pull/294

Remaining v1-spec items

● Security
○ Issue #242: Decide if CPACE in scope for v1
○ Issue #282: Decide if key rotation is in scope for v1
○ Issue #275: Update or drop TLS SNI
○ Issue #278: Decide what subject name to use in the cert
○ Other security-tracker feedback

● Other
○ Remote playback refinements / feature requests (~ 6 issues)
○ Issue #132: Refine behavior around private browsing mode

https://github.com/w3c/openscreenprotocol/issues/242
https://github.com/w3c/openscreenprotocol/issues/282
https://github.com/w3c/openscreenprotocol/issues/275
https://github.com/w3c/openscreenprotocol/issues/278
https://github.com/w3c/openscreenprotocol/issues?q=is%3Aissue+is%3Aopen+label%3Asecurity-tracker
https://github.com/w3c/openscreenprotocol/issues/132

FINIS

Issue #275

“TLS SNI requirement is incompatible with TLS SNI definition” (citing multiple
RFCs)

TLS does not allow underscores in the SNI, so we can’t use
<fp>._openscreen._udp._local

1. Keep SNI, remove underscores
2. Come up with alternative SNI syntax
3. Remove SNI (may lose port sharing)

Issue #279

“The keyUsage name is digitalSignature, not signing”

RFC 5280 has a specific token for this.

Proposal:

1. Fix this.

https://tools.ietf.org/html/rfc5280#section-4.2.1.3

Issue #210

“Describe encoding/decoding of PSK into numeric and QR codes.”

We need a standardized way to turn a binary PSK into a characters or a QR
code.

<TODO> Describe and/or screenshot examples

PR #296: Adds appendix with PSK specifications.

https://github.com/w3c/openscreenprotocol/pull/296

CPACE Update

● Recommended by the CFRG in March 2020.

● Computes a shared secret (intermediate key) with one round trip.

● The second version of the Internet-Draft for CPACE was published on 7/25/2021.

● There are two flavors (elliptic curves) that have different implementation properties.

● CPACE includes a shared “SID” parameter, whose properties may be specified by a Sep

2021 paper.

● There are several open source implementations, unsure how vetted they are.

● Can prepare a more detailed comparison with SPAKE2 for another meeting.

https://mailarchive.ietf.org/arch/msg/cfrg/LKbwodpa5yXo6VuNDU66vt_Aca8/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-cpace/
https://www.ietf.org/archive/id/draft-irtf-cfrg-cpace-02.html#name-ciphersuites
https://mailarchive.ietf.org/arch/msg/cfrg/756N-LgPqZ82BbCeeFxPPcqK4-E/

