
Multi-Screen
Window Placement
W3C TPAC 2022 Vancouver Update (Sept 2022) - Second Screen WG
Mike Wasserman - msw@google.com

Spec: github.com/w3c/window-placement
Demo: github.com/michaelwasserman/window-placement-demo
ChromeStatus | Oct 2021 Presentation | May 2022 vF2F Agenda & Minutes

https://github.com/w3c/window-placement
http://github.com/michaelwasserman/window-placement-demo
https://chromestatus.com/feature/5252960583942144
https://docs.google.com/presentation/d/1to93_cM_k81G0Fd1tLwu3b5nTfg3J8L6p-QOJqqahn4
https://github.com/w3c/secondscreen-wg/issues/4

What’s the problem?
Users of web applications are at a disadvantage on devices with multiple displays

<

What’s Missing From the Web
“Access to Hardware (12.4%)” - MDN’s #1 sampled free response

“developers wanted integration with a device OS.
 Also, having web apps behave more like native apps.”

Overall Needs Ranking
“14. Lack of device APIs allowing for access to hardware.”

The Future of the Web
“allow web applications to be more like native apps” - Respondent with 10+ yrs experience

Why take action?

https://insights.developer.mozilla.org/reports/mdn-web-developer-needs-assessment-2019.html#whats-missing-from-the-web-overview
https://insights.developer.mozilla.org/reports/mdn-web-developer-needs-assessment-2019.html#needs-assessment-overall-needs-ranking
https://insights.developer.mozilla.org/reports/mdn-web-developer-needs-assessment-2019.html#pilot-interview-findings-broader-picture

Why take action?

What’s Missing From the Web:
“Hardware/Native API. We do a lot of automation to support doctors, think
automatically position windows across multiple screens among other things.
We currently have to install a desktop app that the website can talk to make this work well.
That combined with dictation software creates a barrier between us and the doctors.”

“... Configuring vsync/gsync/high refresh rate can also be frustrating.”

https://insights.developer.mozilla.org/reports/mdn-web-developer-needs-assessment-2020.html#whats-missing-from-the-web

How might we help?

Initial info Window.screen.isExtended
indicates placement capabilities beyond Window.screen

Change events Window.screen.onchange
alleviates screen metric polling

Additional info ScreenDetails interface
provides screen info beyond Window.screen

Cross-screen placement Screen-specific Element.requestFullscreen() & Window.open()/moveTo()/…
alleviate manual window dragging

Initiating multi-screen Multi-window extensions of user activation models
alleviate repeated manual gestures

Extend windowing APIs
for multi-screen devices

API FPWD published; implementation launched in Chrome M100 (ChromeStatus)

● Fullscreen Capability Delegation launched in Chrome M104 (ChromeStatus, Spec, Doc)

○ Allows a Window to transfer the ability to call requestFullscreen() to another

● Fullscreen Companion Window launched in Chrome M104 (ChromeStatus, Explainer, PR)

○ Allows sites to place fullscreen content and a popup window from one user activation

● Accurate Screen Labels launched in Chrome M105 (ChromeStatus)

○ Enhances screen label strings from EDIDs and higher-level OS APIs

● HDR Support for HTMLCanvasElement DevTrial in Chrome M105 (ChromeStatus, Explainer)

○ ColorWeb CG proposal - exposing per-screen HDR info

Progress Update

https://www.w3.org/TR/window-placement/
https://chromestatus.com/feature/5252960583942144
https://chromestatus.com/feature/6441688242323456
https://wicg.github.io/capability-delegation/spec.html#monkey-patch-to-fullscreen
https://docs.google.com/document/d/1ax54Lf2W3_TovVOj35duKTbcOlXe-nJ-KQdWiy1Ye0c/edit#heading=h.rq4mc1nt5da7
https://chromestatus.com/feature/5173162437246976
https://github.com/w3c/window-placement/blob/main/EXPLAINER_initiating_multi_screen_experiences.md
https://github.com/w3c/window-placement/pull/101
https://chromestatus.com/feature/6317530778959872
https://chromestatus.com/feature/5703719636172800
https://github.com/w3c/ColorWeb-CG/blob/master/hdr_html_canvas_element.md

Let’s see a demo!

michaelwasserman.github.io/window-placement-demo/

https://michaelwasserman.github.io/window-placement-demo/
https://docs.google.com/file/d/1mRaz0q6XxF4sZ_Zae_Pipla7bcgnZmwy/preview

Spec Feedback and Updates

Fullscreen Companion Window feedback and responses:

● Annevk’s feedback in mozilla/standards-positions: (spoofing - fullscreen warning may go unnoticed)

● Merged PR: Clarify deceptive cross-screen placement security considerations #100

● Added Security Considerations, Example Code, security & privacy questionnaire for Explainer

○ Potential mitigation: re-show warning when fullscreen regains attention

● File a new TAG Early Design Review request and follow up on the old request

Filed issues to align and integrate spec content with established specs (premature w/o 2nd implementer):

● [cssom-view] Support for multi-screen devices #7642 (W3C/CSSWG-Drafts)

● Window object support for multi-screen devices #8217 (WHATWG/HTML)

● Proposal: Supporting fullscreen requests in multi-screen environments. #161 (WHATWG/Fullscreen)

https://github.com/mozilla/standards-positions/issues/636
https://github.com/w3c/window-placement/pull/100
https://github.com/w3c/window-placement/blob/main/EXPLAINER_initiating_multi_screen_experiences.md#security-considerations
https://github.com/w3c/window-placement/blob/main/EXPLAINER_initiating_multi_screen_experiences.md#example-code
https://github.com/w3c/window-placement/blob/main/security_and_privacy_initiating_multi_screen_experiences.md
https://github.com/w3c/window-placement/blob/main/EXPLAINER_initiating_multi_screen_experiences.md
https://github.com/w3ctag/design-reviews/issues/767
https://github.com/w3ctag/design-reviews/issues/602#issuecomment-1232303505
https://github.com/w3c/csswg-drafts/issues/7642
https://github.com/whatwg/html/issues/8217
https://github.com/whatwg/fullscreen/issues/161

Requested Enhancements and
Speculative Explorations

Develop use cases for Initiating Multi-Screen Experiences:

● Feature request: Fullscreen support on multiple screens #92

● “it seems like a requestFullscreen call followed by a window.open will result in the pop-up being blocked”

● Opening child window in fullscreen / window.open should support the 'fullscreen' option #7

○ “It would be ideal if we could open a child window in fullscreen directly as opposed to having to open

it and then request fullscreen.”

● “multi-monitor virtual desktop software might want to open a fullscreen window on each display when the

user connects to a remote or virtualized machine session”

●

https://github.com/w3c/window-placement/issues/92
https://bugs.chromium.org/p/chromium/issues/detail?id=1142516
https://github.com/w3c/window-placement/issues/7

Virtual Display Testing - Intro

● Document: Virtual Displays For Automated Tests

● Problem: Lack of automated multi-screen device testing in continuous integration

● Goal: Add test framework support for managing high-fidelity virtual displays at the OS/WM level

○ Connect, disconnect, and reconfigure virtual displays during tests.

○ Test window creation, placement, and fullscreen on specific [virtual] screens.

Basic test pseudocode:

Screen.AddVirtualDisplay(<parameters>);

Window.SetBounds(<bounds on virtual display>);

EXPECT(Window.GetBounds() == <bounds on virtual display>);

Screen.RemoveVirtualDisplay(<id>);

https://docs.google.com/document/d/1rtxO2FEg0Zl_-oXHzIBsJo6py7wkySUpYruteNMlPys/edit?resourcekey=0-yLkX6DGPwNFn1ARMpM-zLQ#

virtual_display_mac_util.h

Virtual Display Testing - Progress on Mac
Tremendous thanks to Fangzhen Song!

fullscreen_controller_interactive_browsertest.cc

and popup_browsertest.cc

https://source.chromium.org/chromium/chromium/src/+/main:ui/display/mac/test/virtual_display_mac_util.h
https://source.chromium.org/chromium/chromium/src/+/main:ui/display/mac/test/virtual_display_mac_util.h
https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/ui/popup_browsertest.cc;l=255;drc=f616c54d73c8eea9db5f7e567611711897651b66;bpv=1;bpt=1
https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/ui/popup_browsertest.cc;l=255;drc=f616c54d73c8eea9db5f7e567611711897651b66;bpv=1;bpt=1
https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/ui/exclusive_access/fullscreen_controller_interactive_browsertest.cc;l=719;drc=f616c54d73c8eea9db5f7e567611711897651b66;bpv=1;bpt=1
https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/ui/popup_browsertest.cc;l=255;drc=f616c54d73c8eea9db5f7e567611711897651b66;bpv=1;bpt=1

Enable more tests!

Support additional platforms:

● Windows: Indirect display driver shows promise

● Linux (X11): xvfb may be sufficient

● Linux (Wayland): Unsure :-/

● Chrome OS (Ash): Pre-existing mechanisms WAI

● Chrome OS (Lacros): Unsure, but I have confidence!

Unified C++ interface: TestScreenEnvironment is a step in this direction.

Support for WPTs: add new TestDriver wiring?

Virtual Display Testing - Loose plans

https://docs.microsoft.com/en-us/windows-hardware/drivers/display/indirect-display-driver-model-overview
https://www.x.org/archive/X11R7.6/doc/man/man1/Xvfb.1.xhtml
https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/ui/exclusive_access/fullscreen_controller_interactive_browsertest.cc;l=689;drc=f616c54d73c8eea9db5f7e567611711897651b66;bpv=1;bpt=1

Thanks!

Appendix

Updating the web platform for multi-screen

Existing web platform APIs Modern Reality

Singular screen info / access Multiple screens connected

Sync APIs with lackluster
permission controls

Want capable applications with
good privacy & security protections

Poor API shapes/ergonomics Need new APIs & play nice with old

A basic example of the API usage
// Detect if the device has more than one screen.
if (window.screen.isExtended) {
 // Request information required to place content on specific screens.
 const screenDetails = await window.getScreenDetails();

 // Detect when a screen is added or removed.
 screenDetails.addEventListener('screenschange', onScreensChange);

 // Detect when the current ScreenDetailed or an attribute thereof changes.
 screenDetails.addEventListener('currentscreenchange', onCurrentScreenChange);

 // Find the primary screen, show some content fullscreen there.
 const primaryScreen = screenDetails.screens.find(s => s.isPrimary);
 await document.documentElement.requestFullscreen({screen : primaryScreen});

 // Find a different screen, fill its available area with a new window.
 const otherScreen = screenDetails.screens.find(s => s !== primaryScreen);
 window.open(url, '_blank', getWindowFeatures(otherScreen));
} else {
 // Detect when an attribute of the legacy Screen interface changes.
 window.screen.addEventListener('change', onScreenChange);
 // Arrange content within the traditional single-screen environment...

}

av
ai

lH
ei

g
h

t

av
ai

lT
op

Web Platform Anatomy: Screen Info

width
availWidth

Standardized:
(CSSOM View)
window.screen h
ei

g
h

t

orientation
 colorDepth
 pixelDepth

Common:
(MDN)

left

to
p

availLeft Proposed: (Explainer)
window.screen.isExtended
window.screen.onchange

window.getScreenDetails()
> { screens[],
 currentScreen,
 onscreenschange,
 oncurrentscreenchange }

screens[i].label
screens[i].isPrimary
screens[i].IsInternal

... more and future (hdr, wcg, refresh rate, etc.)

https://drafts.csswg.org/cssom-view/#the-screen-interface
https://developer.mozilla.org/en-US/docs/Web/API/Screen
https://github.com/webscreens/window-placement

Web Platform Anatomy: Window Placement

screenLeft

sc
re

en
To

pStandardized:
Per-screen coordinates(?)
(definition unclear, impls differ)

innerWidth

outerWidth

in
n

er
H

ei
gh

t

o
u

te
rH

ei
gh

t

Proposed:
Cross-screen coordinates (widely implemented)

Supports cross-screen placement with existing:
● moveTo|By(), open(), screenLeft|Top

Alternative to cross-screen coordinates:
● Screen args for moveTo/open, or new APIs

More developer requests and platform gaps:
● Events on move, like resize
● Open() fullscreen windows
● Open() w/outer bounds
● Maximize, minimize, restore
● ...

screenLeft

sc
re

en
To

p

moveTo|By(x, y)
resizeTo|By(x, y)
open(url, name, features)
(features includes left, top, width, height)

Web Platform Anatomy: Fullscreen API

Element.
requestFullscreen(

{screen: bestScreen});

Element.exitFullscreen()
Document.fullscreenElement
Document.fullscreenEnabled

Document.onfullscreenchange
Document.onfullscreenerror

OT2 API Shape Changes

First Origin Trial Second Origin Trial

Are multiple screens
connected?

Window.isMultiScreen()
Unclear permission requirement.

window.screen.isExtended
No permission required*.

Multi-screen info via
Window.getScreens()

Async access to a static snapshots.
Dictionary spec drifts from Screen.

Need to await new info in event handlers.

Async access to live Screens interface.
Exposes Screen-inheriting objects.

Sync access to new info in event handlers.

Info change events Window.onscreenschange
Conflates all events.

EventTarget is not gated by a permission.

Screen.onchange & Screens.on*change
Per-screen & multi-screen events.

EventTargets gated by permission.

Naming, etc. screens[i].primary,
screens[i].touchSupport, ...

screens[i].isPrimary,
screens[i].pointerTypes, ...

Your feedback is vital! File issues against our proposal and prototype implementation.

https://github.com/webscreens/window-placement/issues
https://bugs.chromium.org/p/chromium/issues/detail?id=897300

Demos
window-placement.glitch.me
web.dev/multi-screen-window-placement

michaelwasserman.github.io/window-placement-demo

https://web.dev/multi-screen-window-placement/
https://window-placement.glitch.me/
http://web.dev/multi-screen-window-placement
http://michaelwasserman.github.io/window-placement-demo
https://michaelwasserman.github.io/window-placement-demo/
https://window-placement.glitch.me/

Demo

https://docs.google.com/file/d/1eTcUDuSpSoOGHa8vv4mouQ6sh0STcn9D/preview

Feedback? Questions? Let’s chat!

● API refinements

● Related proposals

● Implementation quirks

● Additional platform gaps

● And more …

Spec issues: github.com/w3c/window-placement

Impl issues: crbug.com (component:Blink>Screen>MultiScreen)

Contacts: msw@ or desktop-pwas-team@

https://github.com/w3c/window-placement/
http://crbug.com
mailto:msw@google.com
mailto:desktop-pwas-team@google.com

Integration with related APIs/proposals
Window Segments Enumeration API

● Exposes bounds for each content region of a single window that spans multiple (?) Screens
○ partial interface Window { sequence<DOMRect> getWindowSegments(); };

● If one Screen can yield multiple segments, should per-Screen segments be exposed? (issue #7)
○ Expose which screens have segments/folds before a window is placed there?
○ Add partial interface Screen { readonly attribute FrozenArray<DOMRect> segments; };?

Screen Fold API
● Exposes the angle and orientation of a fold in a single (?) Screen

○ partial interface Screen { [SameObject] readonly attribute ScreenFold fold; };
● Support for: One fold between two Screens? Off-center folds? Multiple folds per Screen? (issue #38)

○ Add partial interface ScreenFold { readonly attribute FrozenArray <Screen> screens; };? More?
○ Add partial interface ScreenFold { readonly attribute long position; };?
○ Use partial interface Screen { [SameObject] readonly attribute FrozenArray<ScreenFold> folds; };?

Visual Viewport API
● Exposes information about the scaling and scrolling of content within a Window

See related Multi-Screen Window Placement issues #21, #35, #36
Naive principle: A multi-screen API should expose all Screen interface info for each available Screen.
For example: if Screen.hdr was added, one should expect this to work: (await getScreens()).screens[i].hdr;

https://github.com/webscreens/window-segments
https://github.com/webscreens/window-segments/issues/7
https://w3c.github.io/screen-fold/
https://github.com/w3c/screen-fold/issues/38
https://github.com/WICG/visual-viewport/
https://github.com/webscreens/window-placement/issues/21
https://github.com/webscreens/window-placement/issues/35
https://github.com/webscreens/window-placement/issues/36
https://github.com/w3c/csswg-drafts/issues/4471

Cross-screen window coordinates
New placement APIs not needed

Per-screen window coordinates
New placement APIs needed

Maximize Privacy UA lies, e.g. { Window.screenLeft|Top,Screen.Width|Height == 0,
Window.outerWidth|Height,Screen.width|height == Window.innerWidth|Height}

Window placement isn’t really feasible; fingerprinting is minimized...

Toggle with
permission?

UA lies w/o permission; gives actual coordinates w/permission
ScreenLeft|Top & outerWidth|Height change w/permission… unprecedented?

Maximize
Transparency

UA gives actual coordinates, other multi-screen info gated by permission
windows on separate screens can collude, e.g. win1.screen.width != win2.screen.width

Sites w/o permission can sometimes infer
multi-screen geometry with one window.

(e.g. screenLeft > screen.width)

Sites w/o permission can’t infer
multi-screen geometry with one window.
Sites w/o permission can’t always discern if

two windows are on the same display.

Coordinate system standardization
Spec is unclear about multi-screen environments; let’s consider options…

https://github.com/webscreens/window-placement/blob/master/additional_explorations.md#using-cross-screen-coordinates-or-per-screen-coordinates

Cross-screen fullscreen window behavior
Chromium uses the underlying window for fullscreen (browser/popup/web application).
So, the cross-screen fullscreen prototype moves the underlying window to the target screen.

Users may perceive that the window has “disappeared” while an element is fullscreen.

Is this purely an implementation detail? Should the Fullscreen API prescribe behavior?

Also, should we support multiple fullscreen elements from a single document?

https://fullscreen.spec.whatwg.org/
https://github.com/webscreens/window-placement/blob/master/additional_explorations.md#support-multiple-fullscreen-elements-from-a-single-document

Looking ahead: Possible future proposals
Here are some developer requests and platform gaps not (yet) addressed by this proposal.

Window placement:
● Events on move, like resize (exploration)
● Open() fullscreen windows (#7)
● Open() w/outer bounds
● Maximize, minimize, restore, focus (#3)
● Moving/swapping fullscreen screens (#5)
● Z-ordering… :-/ (#10)
● More ergonomic and powerful APIs… (#8, explorations: A, B)
● Parent/child and modal window relationships? (exploration)
● Other properties (exploration)

Screen information:
● HDR & WCG
● Refresh Rate
● Other info (exploration)

https://github.com/webscreens/window-placement/blob/master/additional_explorations.md#surface-events-on-window-bounds-state-or-display-mode-changes
https://github.com/webscreens/window-placement/issues/7
https://github.com/webscreens/window-placement/issues/3
https://github.com/webscreens/window-placement/issues/5
https://github.com/webscreens/window-placement/issues/10
https://github.com/webscreens/window-placement/issues/8
https://github.com/webscreens/window-placement/blob/master/additional_explorations.md#new-window-placement-methods-or-overloads-of-existing-methods
https://github.com/webscreens/window-placement/blob/master/additional_explorations.md#extend-apis-to-control-window-state-display-modes-etc
https://github.com/webscreens/window-placement/blob/master/additional_explorations.md#support-dependent-or-child-window-types
https://github.com/webscreens/window-placement/blob/master/additional_explorations.md#new-window-properties-to-consider-exposing
https://github.com/webscreens/window-placement/blob/master/additional_explorations.md#new-screeninfo-properties-to-consider-as-use-cases-arise

Chromium Implementation Anatomy

Browser

RenderFrameHost (&View&Widget)
ScreenEnumerationImpl Mojo service impl

UpdateVisualProperties & ScreenInfo legacy IPC

PermissionControllerImpl (per-frame), Activation
exclusive access FullscreenController

WebContentsImpl::RequestSetBounds
WebContentsImpl::ShowCreatedWindow

Browser::AddNewContents, navigation, initial_bounds

unit/browser/interactive_ui tests, UMA

views::Widget bounds init clamping & WindowSizer
display::Screen[Ash|Base|Mac|Ozone|Win|X11]

ui/display::Display & display.mojom

Renderer

RenderFrame (&View&Widget)
GlobalScreenEnumeration Mojo client

UpdateVisualProperties & ScreenInfo legacy IPC

permission.mojom, *_descriptor.idl, *_util.cc
Blink-side FullscreenController

[Local]DomWindow & Screen JS interface impls
ChromeClient::SetWindowRectWithAdjustment

IDLs: screen, window, fullscreen & *_options

Web platform tests, UseCounter

Subframe FeaturePolicy, permission delegation
Execution context lifetimes, promises, async fun

