
W3C WebRTC
WG Meeting

June 23, 2022
7 AM - 9 AM

Chairs: Bernard Aboba
Harald Alvestrand
Jan-Ivar Bruaroey 1

W3C WG IPR Policy
● This group abides by the W3C Patent Policy

https://www.w3.org/Consortium/Patent-Policy/
● Only people and companies listed at

https://www.w3.org/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

2

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!
● Welcome to the June 2022 interim meeting

of the W3C WebRTC WG, at which we will
cover:
○ WebRTC WG Rechartering
○ Region Capture
○ Region Capture Extensions
○ Face Detection

● Future meetings:
○ July 19
○ September 12, 13, 15 (TPAC 2022)

3

https://www.w3.org/2011/04/webrtc/wiki/Main_Page#Meetings
https://docs.google.com/spreadsheets/d/1GNwrHKl06ftyCldJIkxxYF1Sq1m-5uf4rM5bkresfD0/edit?pli=1#gid=1946745120

About this Virtual Meeting
● Meeting info:

○ https://www.w3.org/2011/04/webrtc/wiki/June_23_2022
● Link to latest drafts:

○ https://w3c.github.io/mediacapture-main/
○ https://w3c.github.io/mediacapture-extensions/
○ https://w3c.github.io/mediacapture-image/
○ https://w3c.github.io/mediacapture-output/
○ https://w3c.github.io/mediacapture-screen-share/
○ https://w3c.github.io/mediacapture-record/
○ https://w3c.github.io/webrtc-pc/
○ https://w3c.github.io/webrtc-extensions/
○ https://w3c.github.io/webrtc-stats/
○ https://w3c.github.io/mst-content-hint/
○ https://w3c.github.io/webrtc-priority/
○ https://w3c.github.io/webrtc-nv-use-cases/
○ https://github.com/w3c/webrtc-encoded-transform
○ https://github.com/w3c/mediacapture-transform
○ https://github.com/w3c/webrtc-svc
○ https://github.com/w3c/webrtc-ice

● Link to Slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● The meeting is (still) being recorded. The recording will be public.
● Volunteers for note taking? 4

https://www.w3.org/2011/04/webrtc/wiki/June_23_2022
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-extensions/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions/
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/mst-content-hint/
https://w3c.github.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://github.com/w3c/webrtc-encoded-transform
https://github.com/w3c/mediacapture-transform
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://www.w3.org/2011/04/webrtc/wiki/June_23_2022
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

W3C Code of Conduct
● This meeting operates under W3C Code of Ethics and

Professional Conduct

● We're all passionate about improving WebRTC and the
Web, but let's all keep the conversations cordial and
professional

5

https://www.w3.org/Consortium/cepc/
https://www.w3.org/Consortium/cepc/

Virtual Interim Meeting Tips
This session is (still) being recorded

● Type +q and -q in the Google Meet chat to get into and out
of the speaker queue.

● Please use headphones when speaking to avoid echo.
● Please wait for microphone access to be granted before

speaking.
● Please state your full name before speaking.
● Poll mechanism may be used to gauge the “sense of the

room”.

6

Understanding Document Status
● Hosting within the W3C repo does not imply adoption by the

WG.
○ WG adoption requires a Call for Adoption (CfA) on the

mailing list.
● Editor’s drafts do not represent WG consensus.

○ WG drafts do imply consensus, once they’re confirmed
by a Call for Consensus (CfC) on the mailing list.

○ Possible to merge PRs that may lack consensus, if a
note is attached indicating controversy.

7

Issues for Discussion Today
● 07:10 - 07:20 WebRTC WG Re-Charter (Dom)
● 07:20 - 08:10 AM Region Capture Issues
● 08:10 - 08:35 AM Region Capture Extensions
● 08:35 AM - 08:55 AM Face Detection
● 08:55 AM - 09:00 AM Wrap-up and next steps

Time control:
● A warning will be given 2 minutes before time is up.
● Once time has elapsed we will move on to the next item.

8

W3C WebRTC WG Re-Charter (Dom)
● Current charter expires end of September
● Draft of new charter

○ Mostly continuation of current work
○ Advisory Committee review in August

● Issue #70
○ Any spec to abandon or transfer to another group?

9

http://w3c.github.io/webrtc-charter/webrtc-charter.html
https://github.com/w3c/webrtc-charter/issues/70

Region Capture Issues
Start Time: 07:20 AM
End Time: 08:10 AM

10

CropTarget.fromElement
Case for Sync, Jan-Ivar
Start Time: 07:20 AM
End Time: 07:35 AM

11

Issues for Discussion Today
● Issue 17: What makes CropTarget special to require an

asynchronous creation?
○ Sync Proposal: Jan-Ivar (10+5 min)
○ Async Proposal: Elad (10+5 min)
○ Shared discussion (10min)

● Issue 18: Is CropTarget name too generic? (Youenn 10min)

12

https://github.com/w3c/mediacapture-region/issues/17
https://github.com/w3c/mediacapture-region/issues/18

📙 https://www.w3.org/TR/design-principles/#synchronous

Issue 17: What makes CropTarget special to require an
asynchronous creation? SYNC PROPOSAL (Jan-Ivar 1/6)

13

https://www.w3.org/TR/design-principles/#synchronous
https://github.com/w3c/mediacapture-region/issues/17

Issue 17: Why async CropTarget creation? (Jan-Ivar 2/6)

14

Non-consensus API is async: const target = await CropTarget.fromElement(element);

Proposed API is sync: const target = new CropTarget(element);

Its purpose: associate a serializable identifier with an element (aka minting)
“Calling fromElement with an Element of a supported type associates that Element with a CropTarget.
CropTarget is an intentionally empty, opaque identifier. Its purpose is to be handed to cropTo as input.”

As currently specified, this cannot fail for non-synchronous reasons. But see #48.

CropTarget only exists because Element cannot be postMessaged:
 // iframe.html

parent.postMessage(new CropTarget(element), "*");

 // toplevel.html
window.onmessage = async ({data: cropTarget}) => await track.cropTo(cropTarget);

Testable requirement: cropTo MUST accept it, which doesn’t require BOTH to be async

https://github.com/w3c/mediacapture-region/issues/17
https://w3c.github.io/mediacapture-region/#dom-croptarget-fromelement
https://dom.spec.whatwg.org/#element
https://dom.spec.whatwg.org/#element
https://w3c.github.io/mediacapture-region/#dom-croptarget
https://w3c.github.io/mediacapture-region/#dom-browsercapturemediastreamtrack-cropto
https://github.com/w3c/mediacapture-region/issues/48

Issue 17: Why async CropTarget creation? (Jan-Ivar 3/6)

15

Multiple actions need to happen before we’re cropping anything. UAs can jump the gun but as an optimization

⏱ toplevel.html iframe.html UA notes
 const tgt = await CropTarget.fromElement(el) Optimization!

window.onmessage parent.postMessage(tgt) no action 🛑 🛑

 no action 🛑 🛑
 User pushes button

await getDisplayMedia()
Prompt user for capture

 Cancels or selects other 🛑 🛑

User selects (self) capture (now being captured)
no action 🛑 🛑

App decides to crop
await track.cropTo(tgt) (now cropping) fallback: “unoptimized” IPC Crop!

https://github.com/w3c/mediacapture-region/issues/17

Issue 17: Why async CropTarget creation? (Jan-Ivar 4/6)

16

#48 is a new request on the spec to expose resource exhaustion errors in fromElement

But allowing random JS in would-be-captured documents to exhaust cropping resources is bad:
● Creates action at a distance, where JS libs can DoS attack cropping without user permission
● Defeating cropping may expose private user info in unsuspecting poorly-written apps 🦶🔫
● Early resource allocation inherently unnecessary; premature optimization to avoid cropTo IPC

DoS is avoided by simply doing IPC and resource allocation in cropTo. With that baseline, any
earlier resource allocation is purely UA optimization, whose cost and complexity is borne by UA.

● Precedent: mediaSource.getHandle() is sync. Bigger Element & MessagePort don’t exhaust
● Privacy: Exposing global resource limits to JS leaks cross-origin correlatable information
● Smaller local per-doc limits become exhaustible even by well-designed apps, web compat
● Web developers are unlikely to ever expect or check for exhaustion
● Better: UAs handle it, not fail (optimize for well-designed apps and fall back to baseline)

https://github.com/w3c/mediacapture-region/issues/17
https://github.com/w3c/mediacapture-region/issues/48
https://en.wikipedia.org/wiki/Action_at_a_distance_%28computer_programming%29
https://w3c.github.io/media-source/#dom-mediasource-gethandle
https://dom.spec.whatwg.org/#element
https://html.spec.whatwg.org/multipage/web-messaging.html#dom-messagechannel

Issue 17: Why async CropTarget creation? (Jan-Ivar 5/6)

17

Performance: a part of the spec that doesn’t have consensus says:
“The user agent MUST resolve p only after it has finished all the necessary internal propagation of state associated with the new CropTarget, at
which point the user agent MUST be ready to receive the new CropTarget as a valid parameter to cropTo.”

Process separation of iframes means IPC of “state propagation” AND postMessage:

// iframe.html
parent.postMessage(await CropTarget.fromElement(element), "*");

 // toplevel.html
window.onmessage = async ({data: cropTarget}) => await track.cropTo(cropTarget);

Serializing IPC1 + IPC2 + IPC3 is slower than running IPC1 in parallel with IPC3.
cropTo can handle either approach. Proposed API is faster, simpler, still “optimizable”:

parent.postMessage(new CropTarget(element), "*");

Satisfies §6.7 “The API implementation will not be blocked by … inter-process communication”

^ serializes 3 IPCs!

 IPC 2 (Rsc alloc success) IPC 1 (state propagation) IPC 3 (PostMsg)

https://github.com/w3c/mediacapture-region/issues/17
https://w3c.github.io/mediacapture-region/#dom-croptarget
https://w3c.github.io/mediacapture-region/#dom-croptarget
https://w3c.github.io/mediacapture-region/#dom-browsercapturemediastreamtrack-cropto
https://github.com/w3c/mediacapture-region/issues/17#issuecomment-1132232768
https://www.w3.org/TR/design-principles/#synchronous

In conclusion (in support sync proposal, not meant to be neutral):

Early resource allocation is premature optimization, opens up DoS attacks on cropping

A sync API does not limit optimization. Burden is on UAs to optimize within the API
(optimization-fail ≠ operation-fail. Implement a baseline in cropTo to fall back on)
New issues (#48) from optimization side effects not a good use of WG time. Let’s be done.

There’s no inherent need and no web developer benefit to it being async, and
the async API goes against W3C design principles §2.4, §6.6, and §6.7.

There’s also the web developer cost to it being async:
● Every await is a preemption point, requiring apps to reassess state (or risk data races)
● Much like non-const methods in c++, async propagates to all callers, and callers of callers etc.
● Having multiple processing failure points (for extremely rare resource errors) is risky
● It is slower (delaying when postMessage can happen)

Issue 17: Why async CropTarget creation? (Jan-Ivar 6/6)

https://github.com/w3c/mediacapture-region/issues/48
https://www.w3.org/TR/design-principles/#consistency
https://www.w3.org/TR/design-principles/#constructors
https://www.w3.org/TR/design-principles/#synchronous
https://github.com/w3c/mediacapture-region/issues/17

CropTarget.fromElement
Case for Async, Elad
Start Time: 07:35 AM
End Time: 07:50 AM

19

Region Capture:
● API for cropping video tracks.
● Proposed by your humble servant roughly 1.5 years ago.
● Implemented by Chromium.
● Successfully deployed by some of Web’s biggest apps. (1, 2)
● Battle-tested. (1)
● Chromium-team has implemented and learned their lessons.
● Mozilla and Apple have not implemented.

Region Capture API and Status

20

https://docs.google.com/presentation/d/1crumgYj4eHkjo04faLktPTg0QoYJhTFoosEBudfJBuw/edit#slide=id.g7954c29f8a_2_0
https://github.com/w3c/mediacapture-region/issues/31
https://github.com/w3c/mediacapture-region/issues/17#issuecomment-1134934556
https://storage.googleapis.com/gweb-cloudblog-publish/images/Collaborate_on_content.max-2800x2800.jpg

Recall Issue #17 (Token-minting asynchronicity)

21

● Cropping involves a target.
● Targets are minted as CropTarget then passed to capturer.
● Is the CropTarget associated with the captured tab?

Verification required.
● Verification only possible when calling cropTo(), as the

capture may start before/after minting.
● When calling cropTo() - less IPCs => faster resolution.

4. JS calls cropTo(token)

Recall Chrome’s Implementation

22

Captured Content

1. JS mints a token

Capturer

“Browser” and GPU processes

3. Post token

2. Token minted

5. Receive ack/fail

● Simple and performant
○ cropTo() only makes one IPC round-trip.
○ This trip is to the “browser” process. Main-thread contention in the

captured document does not slow down the capturer.
○ Token can even be minted ahead of time.
○ No race conditions.

● Flexible
○ Can change implementation later, because async is easier than sync.

Chrome’s Motivation for Own Implementation

23

Capturee Capturer

“Browser” and
GPU

processes

Chrome needs CropTarget.fromElement() to be async.
● Our desired trade-offs set requires an async API.

Mozilla prefers CropTarget.fromElement() to be sync.
● Can trivially wrap sync result in a pre-resolved Promise.
● No change to the implementation and its set of trade-offs.

Unless Mozilla can demonstrate asynchronicity itself is an issue?
Let’s examine.

Focal Point of Present Debate

24

The W3C’s Design Principles read:
● User needs come before the needs of web page authors,
● which come before the needs of user agent implementors,
● which come before than the needs of specification writers,
● which come before [redacted; discussed in upcoming slides].

(Source: https://w3ctag.github.io/design-principles/#priority-of-constituencies)

Priority of Constituencies

25

https://w3ctag.github.io/design-principles/#priority-of-constituencies

Users don’t know if the API is async. But Web-apps will be
more performant and interoperable. Users will love that.

Web-developers don’t mind adding “await” in one line of
their million-line application. They’ve told us as much. (1, 2)

Implementers demand this. The Chromium team, which is
the ultimate authority on Chromium implementation, say it’s
a Must. So for interoperability, this is required.

26

Cui bono? (Who profits?)

https://github.com/w3c/mediacapture-region/issues/31
https://github.com/w3c/mediacapture-region/issues/17#issuecomment-1134934556

Arguments for Synchronicity

27

It’s been argued that all constituencies benefit from
asynchronicity. What argument remains for synchronicity? Is it
theoretical purity?
● TAG’s preference is inapplicable here, as IPCs require

asynchronicity - according to TAG’s own principles.
● The W3C’s design principles expressly warn against dwelling

on theoretical purity.
● TAG has explicitly criticized this Working Group for its

inability to reach interoperability due to purity hang-ups. (Next
slide.)

Theoretical Purity - W3C Design Principles
Remember the redacted slide? Here it is in full:

The W3C’s Design Principles read:
● User needs come before the needs of web page authors,
● which come before than the needs of user agent implementors,
● which come before than the needs of specification writers,
● which come before theoretical purity.

Theoretical purity is dead last.
28

TAG Feedback

29

Of the API as a whole:
● “we reviewed it and were satisfied”

Of the idea to make fromElement synchronous:
● Sangwhan: “I have looked at this discussion and think the developer ergonomic

gains would be minimal… I don't see a significant gain in terms of
ergonomics for developers with sync”

● Sangwhan: “it's fine to be async”
● Dan: “we can feed back that interoperability is an imperative”
● Dan: “[...] the issues of interop are many. This is something that should be

guiding the WGs work. That should be the primary goal of anything. Not the
most elegant or correct API”

https://github.com/w3ctag/meetings/blob/gh-pages/2022/telcons/04-25-minutes.md#media-capture-region

Summary
● All constituents benefit from a flexible API that can be

optimally implemented by each user agent according to their
philosophy and their needs.

● Attempts to force a synchronous API serve no purpose other
than to inappropriately constrain implementations.

● TAG has rightly criticized this Working Group for its inability
to make progress and prioritize interoperability.

● Let’s do better. Much work awaits.

30

CropTarget.fromElement
Sync vs. Async - Shared Discussion
Start Time: 07:50 AM
End Time: 08:00 AM

31

CropTarget Name - Youenn
Start Time: 08:00 AM
End Time: 08:10 AM

32

Issue 18: Is CropTarget name too generic?

● CropTarget is made of two very generic terms
○ 'Crop'

■ Widely used term in the context of images
■ HTML mostly talks about masking & clipping

● Using Crop seems fine
○ 'Target'

■ Does not bring much value (?)
● Can we find a more descriptive name?

○ Let's look at how to define CropTarget

33

https://github.com/w3c/mediacapture-region/issues/18

Issue 18: Is CropTarget name too generic?

● What is a CropTarget?
1. A serialized object used by APIs to refer to out-of-process
DOM elements
2. A reference to an out-of-process bounding box
3. An object whose sole purpose is to be given to cropTo

● Why not a name that directly represents what this is?
○ ElementReference, BoundingBox
○ CaptureRegion, CropTarget, CropRegion

34

https://github.com/w3c/mediacapture-region/issues/18

Issue 18: Is CropTarget name too generic?

● MediaStreamTrack.cropTo is dedicated to screen capture
○ We might want to crop other tracks in the future

■ Face detection based camera track cropping?
● It seems ok to favor the 3rd definition

○ An object whose sole purpose is to be given to cropTo

● How about CropRegion?
○ Bonus: it aligns with the spec name

35

https://github.com/w3c/mediacapture-region/issues/18

Discussion
End Time: 08:10 AM

36

Region Capture Extensions (Elad)
Start Time: 08:10 AM
End Time: 08:35 AM

37

● Currently, it is only allow to crop tracks resulting from
self-capture.

● Reasons to disallow cropping arbitrary tracks:
○ ?

● Reason allow cropping arbitrary tracks:
○ We can think of great use-cases.
○ For example, if a video conference app is capturing a

known application, maybe they can collaborate to show
the local user full controls, while only presenting select
content to remote users. (To the local user’s benefit.)

Region Capture #63: Cropping non-self-capture tracks

38

https://github.com/w3c/mediacapture-region/issues/63

39

This is how I could do it today, using Region Capture over a
self-capture track. The app could choose to only share the middle part.

40

What if the video conference
is in another tab?

I only want to present this part
of the Slides.

● Currently, CropTargets are serializable but not stringifiable. Why?
● Allowing stringification:

○ Allows communicating CropTargets over Capture Handle.
○ Allows communicating CropTargets over a shared cloud infrastructure

between tabs which are cross-origin.
○ Allows utilization of existing string-based mechanisms for

communication between documents, which some applications have.
For example, when going over a shared cloud infrastructure.

● Avoiding stringification:
○ Apple has voiced concerns over persistence to storage, garbage

collection, etc. Could these be restated so that we may examine the
validity of the arguments?

○ Any other concerns?

Making CropTargets stringifiable

41

● Web-developers hate API failures.
● Web-developers prefer APIs that never fail.
● But APIs fail for foreseeable and unforeseeable reasons.

○ Browser vendors choose to ship partial implementations.
○ Complete implementations are rendered incomplete by future changes in

adjacent specs.
○ Confident engineers discover that challenges were greater than initially

anticipated, and that their implementation does in fact run into various forms of
resource-exhaustion.

● If an API fails when it shouldn’t - are Web-developers comforted by the knowledge
that the spec disallowed the failure?

● Will browser vendors refund the Web-developer for the non-compliant failure?
● Since failures are a fact of life, let’s at least have consistent failures.

Predictable Errors in Region Capture

42

Discussion
End Time: 08:35 AM

43

Face Detection
Start Time: 08:35 AM
End Time: 08:55 AM

44

Face Detection PR, Explainer
Face Detection is one of the basic building blocks for
other features like -
Face Framing : Face detection at lower fps, rest Face
tracking
Eye Gaze Correction : PCA - HOG + Random Forest
using Face Landmark results.
Low Light Adjustment : Brightness / contrast
adjustments based on Face ROI

45

https://github.com/w3c/mediacapture-extensions/pull/48
https://github.com/riju/faceDetection/blob/main/explainer.md

Face Detection

46

Youenn’s comments
1. I would be tempted to make the API surface as minimal as possible (What

is the MVP?) and leave the rest to a dedicated 'future steps' section. For
instance, maybe the MVP only needs faceDetectionMode constraint (not
landmarks/numfaces/contourpoints constraints) with a reduced set of
values ("none" and "presence"). I am not sure about the difference
between presence and contour for instance, which is somehow distracting.
Are FaceLandmark part of the MVP as well?

2. The proposal is based on the VideoFrameMetadata construct, which is
fine. We should try to finalise this discussion in WebCodecs.

3. DetectedFace has a required id and required probability. I can see 'id'
being useful, maybe probability should be optional.

47

https://github.com/w3c/mediacapture-extensions/pull/48#issuecomment-1155087741

Discussion
End Time: 08:55 AM

48

Thank you

Special thanks to:

WG Participants, Editors & Chairs

49

