
● Issue 170/Issue 619: Consistent SVC metadata
● Media Pipeline Architecture

1

For Discussion Today

https://github.com/w3c/webrtc-encoded-transform/issues/170
https://github.com/w3c/webcodecs/issues/619
https://github.com/w3c/media-pipeline-arch/

Issue 170/Issue 619: Consistent SVC metadata

● WebCodecs defines EncodedChunkMetadata as follows:

● Dictionary has structure to allow for future expansion of
SvcOutputMetadata dictionary.

2

https://github.com/w3c/webrtc-encoded-transform/issues/170
https://github.com/w3c/webcodecs/issues/619
https://www.w3.org/TR/webcodecs/#encoded-video-chunk-metadata

● Complete WebCodecs SVC metadata proposal is based on the information included within
the Dependency Descriptor RTP header extension:

dictionary EncodedVideoChunkMetadata {

// Number for identifying this frame in |dependsOnIds| and |chainLinks| (for other chunks).

unsigned short frameNumber;

// List of frameNumbers that this chunk depends on. Used to detect/handle network loss. Decoding out of order is an error.

list<unsigned long> dependsOnIds;

// IDs of the spatial layer and temporal layer this chunk belongs to.

unsigned long spatialLayerId;

unsigned long temporalLayerId;

// List of decoder targets this frame participates in. Used to know whether this frame should be sent (forwarded) to a given

receiver depending on what decode targets the receiver is expecting. Decode target is a numerical index determined by the

encoder. No commitment that a particular number implies a given layer.

list<unsigned long> decodeTargets;

// Mapping of decode target -> the last important frame to decode prior to "this" frame for the given decode target.

// Used to ensure we preserve decode order for the desired decode target. It is insufficient to simply satisfy the

dependencies for the current frame. See example.

map<unsigned long, unsigned long> chainLinks;

}; 3

Issue 170/Issue 619: Consistent SVC metadata (cont’d)

https://aomediacodec.github.io/av1-rtp-spec/#dependency-descriptor-rtp-header-extension
https://docs.google.com/document/d/1O6kxAQPLWhCRHkH-6zutcqEUOUWRS6NFM2CQAvi1VTg/edit#bookmark=id.h435tnh1jf9k
https://github.com/w3c/webrtc-encoded-transform/issues/170
https://github.com/w3c/webcodecs/issues/619

● Comparison with RTCEncodedVideoFrameMetadata:

4

Issue 170/Issue 619: Consistent SVC metadata (cont’d)

https://github.com/w3c/webrtc-encoded-transform/issues/170
https://github.com/w3c/webcodecs/issues/619

● Issues:
● Name differences

○ temporalLayerId vs. temporalIndex
○ spatialLayerId vs. spatialIndex

● Type mismatches:
○ unsigned short frameNumber vs. unsigned long long frameId
○ sequence <unsigned long> dependsOnIds vs. sequence <unsigned long long>

dependencies
● Missing information

○ sequence <unsigned long> decodeTargets
■ List of decode targets this frame participates in. Used to determine whether this frame

should be forwarded to a receiver based on what decode targets the receiver is
expecting.

○ Map <unsigned long, unsigned long> chainLinks

■ Used to ensure we preserve decode order for the desired decode target. It is insufficient
to satisfy the dependencies for the current frame.

● Proposal: submit PR to harmonize SVC metadata between Encoded Transform and
WebCodecs

5

Issue 170/Issue 619: Consistent SVC metadata (cont’d)

https://github.com/w3c/webrtc-encoded-transform/issues/170
https://github.com/w3c/webcodecs/issues/619

● Established based on conversation at TPAC joint meeting.
● A repository of issues and pointers to sample code covering integration of

“Next Generation Web Media APIs”
● Goals:

○ To understand what “seams” and inconsistencies exist between the
APIs

○ To provide some insight for new media transport designs
■ RTP over QUIC/WebTransport

○ To understand how well the APIs perform.
■ If there are issues, is it a problem in the spec, the implementation,

or the sample code?
● Non-goals:

○ Finding issues in individual specs (file those in the appropriate repos)
○ Finding or mixing implementation bugs (file a browser bug)

6

Media Pipeline Architecture Repo

https://github.com/w3c/media-pipeline-arch/

Next generation Web media APIs
● Capture

○ Media Capture and Streams Extensions
○ Mediacapture-transform

● Encode/decode
○ WebCodecs
○ MSEv2

● Transport
○ WebTransport (HTTP/3 over QUIC)
○ WebRTC data channel in Workers (SCTP/DTLS/UDP)

● Framework
○ WHATWG Streams
○ Web Assembly

https://w3c.github.io/mediacapture-extensions/#transferable-mediastreamtrack
https://w3c.github.io/mediacapture-transform/
https://w3c.github.io/webcodecs/
https://w3c.github.io/media-source/
https://w3c.github.io/webtransport/
https://w3c.github.io/webrtc-extensions/#rtcdatachannel-extensions
https://streams.spec.whatwg.org/
https://webassembly.github.io/spec/core/

The “Pipeline” Model (WHATWG Streams)

● Send

● Receive

Camera Effects Serialize TransportEncode

Transport Deserialize Effects RenderDecode

https://webrtc.internaut.com/wc/wtSender2/

9

Media Pipeline Architecture Issues

https://github.com/w3c/media-pipeline-arch/issues

● WHATWG Streams Samples:
○ PR 583: WebCodecs Encode/Decode in worker

■ Supports WebCodecs codecs and configuration knobs
■ Live site

○ PR 430: WebCodecs-WebTransport Echo in worker
■ Live site
■ Adds Serialization/Deserialization and WebTransport

send/receive to PR 583.
■ Uses frame/stream transport
■ “RTP-ish” frame format
■ Supports SVC, partial reliability
■ Implements a re-ordering buffer but not a full jitter buffer (yet)

10

Media Pipeline Architecture Samples

https://github.com/w3c/webcodecs/pull/583
https://webrtc.internaut.com/wc/wcWorker/
https://github.com/w3c/webtransport/pull/430
https://webrtc.internaut.com/wc/wtSender10/
https://github.com/w3c/media-pipeline-arch/

Parameters to Select

11

● Bitrate: “Average Target Bitrate” target provided to the encoder.
● Keyframe interval: number of frames between each keyframe.
● Codec: VP8, VP9, H.264 or AV1

○ Some oddities noted with VP9 (large frame size with “realtime”)
○ AV1 most solid on MacOS
○ H.265 not supported currently.

● Hardware Acceleration Preference: hw accelerated versus software
encode/decode. Hw acceleration often not available.

● Latency goal: “quality” produces smaller frame sizes, but takes
(marginally) longer than “realtime”.

● Bitrate mode: constant or variable bitrate
● Scalability mode: how many temporal layers to use. Enables differential

protection for the base layer.
● Resolution: reflected in getUserMedia constraints. If your camera doesn’t

support the requested resolution, window will be blacked out.

Frame RTT Graph
● AV1 @ full-Hd with 418 Kbps average bitrate and 30 fps, GoP = 3000, L1T3 scalability mode
● Largest (I-)frame = 12590 octets, median (P-)frame size = 1523 octets
● I-frame is close to the transmission line, indicating that cwind > 12590.

BWE report:
{"count":2283,"loss":0,"reorder":6,"bwe":0,"bwu":4
17956.483387237,"seqmin":0,"seqmax":2282,"len
min":234,"lenfquart":727,"lenmedian":1523,"lentqu
art":2161,"lenmax":12590,"recvsum":3980116}

RTT report:
{"count":2283,"min":80.299,"fquart":92.9,"avg":101
.6191081909768,"median":98.1,"tquart":105.399,"
max":231.6,"stdev":15.421836998138598,"srtt":11
5.60558227812218,"rttvar":7.499192348045117,"
rto":145.60235167030265}

https://webrtc.internaut.com/wc/wtSender10/

