
W3C WebRTC
WG Meeting

April 26, 2022
8 AM - 10 AM

Chairs: Bernard Aboba
Harald Alvestrand
Jan-Ivar Bruaroey 1

W3C WG IPR Policy
● This group abides by the W3C Patent Policy

https://www.w3.org/Consortium/Patent-Policy/
● Only people and companies listed at

https://www.w3.org/2004/01/pp-impl/47318/status are
allowed to make substantive contributions to the
WebRTC specs

2

https://www.w3.org/Consortium/Patent-Policy/
https://www.w3.org/2004/01/pp-impl/47318/status

Welcome!
● Welcome to the April 2022 interim meeting of the W3C

WebRTC WG, at which we will cover:
○ WebNN/mediacapture-transform integration
○ WebRTC-Extensions & WebRTC-PC
○ Voice Isolation
○ Suggested Content Hint
○ Avoid user confusion by avoiding offering undesired audio sources
○ Region Capture

● Future meetings:
○ May 17
○ June 21
○ July 19

3

https://www.w3.org/2011/04/webrtc/wiki/Main_Page#Meetings

About this Virtual Meeting
● Meeting info:

○ https://www.w3.org/2011/04/webrtc/wiki/April 26_2022
● Link to latest drafts:

○ https://w3c.github.io/mediacapture-main/
○ https://w3c.github.io/mediacapture-extensions/
○ https://w3c.github.io/mediacapture-image/
○ https://w3c.github.io/mediacapture-output/
○ https://w3c.github.io/mediacapture-screen-share/
○ https://w3c.github.io/mediacapture-record/
○ https://w3c.github.io/mediacapture-viewport/
○ https://github.com/w3c/mediacapture-transform
○ https://github.com/w3c/mediacapture-handle/
○ https://w3c.github.io/webrtc-pc/
○ https://w3c.github.io/webrtc-extensions/
○ https://w3c.github.io/webrtc-stats/
○ https://w3c.github.io/mst-content-hint/
○ https://w3c.github.io/webrtc-priority/
○ https://w3c.github.io/webrtc-nv-use-cases/
○ https://github.com/w3c/webrtc-encoded-transform
○ https://github.com/w3c/webrtc-svc
○ https://github.com/w3c/webrtc-ice

● Link to Slides has been published on WG wiki
● Scribe? IRC http://irc.w3.org/ Channel: #webrtc
● The meeting is (still) being recorded. The recording will be public.
● Volunteers for note taking? 4

https://www.w3.org/2011/04/webrtc/wiki/April_26__2022
https://w3c.github.io/mediacapture-main/
https://w3c.github.io/mediacapture-extensions/
https://w3c.github.io/mediacapture-image/
https://w3c.github.io/mediacapture-output/
https://w3c.github.io/mediacapture-screen-share/
https://w3c.github.io/mediacapture-record/
https://w3c.github.io/mediacapture-viewport/
https://github.com/w3c/mediacapture-transform
https://github.com/w3c/mediacapture-handle/
https://w3c.github.io/webrtc-pc/
https://w3c.github.io/webrtc-extensions/
https://w3c.github.io/webrtc-stats/
https://w3c.github.io/mst-content-hint/
https://w3c.github.io/webrtc-priority/
https://w3c.github.io/webrtc-nv-use-cases/
https://github.com/w3c/webrtc-encoded-transform
https://github.com/w3c/webrtc-svc
https://github.com/w3c/webrtc-ice
https://www.w3.org/2011/04/webrtc/wiki/April_26_2022
http://irc.w3.org/
http://irc.w3.org/?channels=webrtc

W3C Code of Conduct
● This meeting operates under W3C Code of Ethics and

Professional Conduct

● We're all passionate about improving WebRTC and the
Web, but let's all keep the conversations cordial and
professional

5

https://www.w3.org/Consortium/cepc/
https://www.w3.org/Consortium/cepc/

Virtual Interim Meeting Tips
This session is (still) being recorded

● Type +q and -q in the Google Meet chat to get into and out
of the speaker queue.

● Please use headphones when speaking to avoid echo.
● Please wait for microphone access to be granted before

speaking.
● Please state your full name before speaking.
● Poll mechanism may be used to gauge the “sense of the

room”.

6

Understanding Document Status
● Hosting within the W3C repo does not imply adoption by the

WG.
○ WG adoption requires a Call for Adoption (CfA) on the

mailing list.
● Editor’s drafts do not represent WG consensus.

○ WG drafts do imply consensus, once they’re confirmed
by a Call for Consensus (CfC) on the mailing list.

○ Possible to merge PRs that may lack consensus, if a
note is attached indicating controversy.

7

Issues for Discussion Today
● 08:10 - 08:30 AM WebNN/mediacapture-transform integration

○ 08:10 - 08:20 Slides
○ 08:20 - 08:30 Discussion

● 08:30 - 08:50 AM WebRTC-Extensions & WebRTC-PC (Bernard)
○ Slides (08:30 - 08:40)
○ Discussion (08:40 - 08:50)

● 08:50 - 09:10 AM Voice Isolation Constraints (Harald)
○ Slides (08:50 - 09:00)
○ Discussion (09:00 - 09:10)

● 09:10 - 09:25 AM Suggested Content Hint (Elad)
○ Slides (09:10 - 09:15)
○ Discussion (09:15 - 09:25)

● 09:25 - 09:40 AM Avoid user-confusion by avoiding offering undesired audio sources (Elad)
○ Slides (09:25 - 09:30)
○ Discussion (09:30 - 09:40)

● 09:40 - 9:55 Region Capture (Youenn)
○ Slides (09:40 - 09:48)
○ Discussion (09:48 - 9:55)

● 9:55 - 10:00 AM Wrap-up and Next Steps
Time control:

● A warning will be given 2 minutes before time is up.
● Once time has elapsed we will move on to the next item. 8

WebNN/mediacapture-transform integration
Start Time: 8:10 AM
End Time: 8:30 AM

9

webnn/issues/226: Integration with real-time video processing

● Opened on November 10, 2021.
● Suggested goals:

● Build a prototype that integrates the mediacapture-transform API (in a
worker context) with a TF.js model that allows for background blur.

● Measure performance of the prototype across various TF.js backends,
including a WebNN-native one.
○ Ideally this would include specific measurements of memory copies,

although the raw result on FPS may already give sufficient hints.
● Focus on video processing.

○ Some of the major performance risks (in particular in terms of
memory management, and potential transitions between CPU and
GPU processing) will only be surfaced with video processing.

10

https://github.com/webmachinelearning/webnn/issues/226

webnn/issues/226: Issues raised in the thread
● Garbage Collection

○ PR in progress: Report videoframe external memory as released on close
○ This allows the GC system to not garbage collect frequently when VideoFrames are correctly

closed. Without this change GC would occur frequently because despite calling close()... there is
external memory still allocated and there is an attempt to garbage collect it.

● Copy removal
○ Dom: “My reading of the code shows that there is at least a GPU→CPU transfer when turning the video

frame into an input tensor; I'm not sure if the model inference is happening on the CPU or GPU. Ideally, and
notwithstanding @anssiko's remarks about making this running in a worker, we would want to write a
full-GPU-only pipeline, if at all possible with no memory copy. Can you already identify gaps in the APIs that
would make this hard or impossible?”

○ Ningxin: “There is a corresponding import video frame to GPU texture extension/proposal: WebGL
WEBGL_webcodecs_video_frame Extension and import VideoFrame from WebCodec to WebGPU
proposal. So it looks like possible that the app can avoid the GPU->CPU transfer by importing the video
frame into a GPU texture and feeding it into the WebNN graph which is created from the same GPU
device.”

● Issue 2500: WebNN/WebGPU Integration
11

https://github.com/webmachinelearning/webnn/issues/226
https://chromium-review.googlesource.com/c/chromium/src/+/3586505
https://github.com/anssiko
https://www.khronos.org/registry/webgl/extensions/proposals/WEBGL_webcodecs_video_frame/
https://www.khronos.org/registry/webgl/extensions/proposals/WEBGL_webcodecs_video_frame/
https://github.com/w3c/webcodecs/pull/412
https://github.com/w3c/webcodecs/pull/412
https://github.com/gpuweb/gpuweb/issues/2500

Video Processing in Workers
https://huningxin.github.io/webrtc-samples/src/content/insertable-streams/video-processing-worker/

12

https://huningxin.github.io/webrtc-samples/src/content/insertable-streams/video-processing-worker/

Video Processing in Workers (cont’d)
● Details of the WebGL processing pipeline (webgl-background-blur.js):

1. VideoFrame import: VideoFrame - (createImageBitmap) -> ImageBitmap -
(gl.texImage2D) -> Texture.

2. Image blur: the shader implementation is based on @Volcomix 's
virtual-background project (thanks!).

3. Background segmentation: it is based TF.js WebGL backend that runs the
TF.js DeepLabV3 model.

4. Image blend: the segmentation result of TF.js is copied into a texture
(Tensor.dataToGPU). Another WebGL frangment shader is used to blend the
original input and the blurred one based on the result texture. The final output
is drawn into an offscreen canvas.

5. VideoFrame export: create VideoFrame from the offscreen canvas.

13

https://github.com/huningxin/webrtc-samples/blob/background_blur/src/content/insertable-streams/video-processing/js/webgl-background-blur.js
https://github.com/Volcomix
https://github.com/Volcomix/virtual-background/blob/main/src/pipelines/webgl2/backgroundBlurStage.ts
https://tfhub.dev/tensorflow/tfjs-model/deeplab/pascal/1/default/1
https://js.tensorflow.org/api/latest/#tf.Tensor.dataToGPU

Video Processing in Workers (cont’d)
● Details of the WebGPU/WebNN processing pipeline (webgpu-background-blur.js):

1. VideoFrame import: VideoFraome - (createImageBitmap) -> ImageBitmap -
(GPUQueue::copyExternalImageToTexture) -> GPUTexture

2. Image blur: the shader implementation is based on @austinEng 's WebGPU samples
project (thanks!).

3. Input tensor preprocessing: it is implemented in a WebGPU compute shader. Its input is a
GPUTexture and the output is a GPUBuffer. The GPUBuffer will feed to WebNN graph
compute as the input.

4. Background segmentation: it is implemented by a WebNN graph (webnn_deeplabv3.js).
The weights come from the TFLite DeepLabV3 model. This TFLite model and TF.js
DeepLabV3 model (used by WebGL pipeline) are based on the same TF model
(tensorflow/deeplabv3/1).

5. Image blend: WebNN graph puts the segmentation results (segmap) into the output
GPUBuffer. Another WebGPU compute shader is used to blend the original input and the
blurred one based on the segmap. The final output is drawn into an offscreen canvas.

6. VideoFrame export: create VideoFrame from the offscreen canvas 14

https://github.com/huningxin/webrtc-samples/blob/background_blur/src/content/insertable-streams/video-processing/js/webgpu-background-blur.js
https://github.com/austinEng
https://github.com/austinEng/webgpu-samples/tree/main/src/sample/imageBlur
https://github.com/huningxin/webrtc-samples/blob/background_blur/src/content/insertable-streams/video-processing/js/webnn-deeplabv3.js
https://tfhub.dev/tensorflow/lite-model/deeplabv3/1/default/1

WebNN/mediacapture-transform integration

15

Import
VideoFrame

Blur image
(WGSL)

Tensorization
(WGSL)

VideoFrame

Segmentation
(ML graph infer)

GPUBuffer GPUBuffer

Blend
(WGSL)

GPUTexture Offscreen
Canvas

Export to
VideoFrame

VideoFrame

GPUTexture

Opens:
● Reduce the CPU usage, current sample spends 35% on

createImageBitmap and 20% on GC
○ More efficient video import?
○ More static pipeline?

● Flow control?
○ The WebGL-based processing pipeline would hang UI on entry level GPU

createImageBitmap
copyExternalImageToT
exture

More details available at: webnn/issues/226

new VideoFrame(canvas)

https://github.com/webmachinelearning/webnn/issues/226

Discussion (End Time: 8:30 AM)

●

16

WebRTC-Extensions & WebRTC-PC (Bernard)
Start Time: 8:30 AM
End Time: 8:50 AM

17

For Discussion Today
● WebRTC-Extensions

○ Issue 95: Deprecate audio/video enumeration in
getCapabilities in favour of Media Capabilities API

○ Issue 100: Allow having inactive by default codecs
● WebRTC-PC Simulcast Issues

○ Issue 2722: sRD(offer) completely overwrites
pre-existing transceiver.[[Sender]].[[SendEncodings]]

○ Issue 2723: The prose around "simulcast envelope"
falsely implies that simulcast encodings can never be
removed

○ Issue 2724: The language around setting a description
appears to prohibit renegotiation of RIDs 18

https://github.com/w3c/webrtc-extensions/issues/95
https://github.com/w3c/webrtc-extensions/issues/100
https://github.com/w3c/webrtc-pc/issues/2722
https://github.com/w3c/webrtc-pc/issues/2723
https://github.com/w3c/webrtc-pc/issues/2724

Issue 95: Deprecate audio/video enumeration in getCapabilities in
favour of Media Capabilities API

● Issue 185: Retrieving RTCRtpCodecCapability from
MediaCapabilities when queried with type = ‘webrtc’
○ contentType values represent audio and video codecs.

■ profile-id can be included in contentType.
○ result returned by mediaCapabilities provides

RTCRtpCodecCapability dictionary in result.webrtcCodec.
○ result.webrtcCodec can then be used as input to

setCodecPreferences() to select the preferred video codec for a
transceiver.

19

https://github.com/w3c/webrtc-extensions/issues/95
https://github.com/w3c/media-capabilities/issues/185

Issue 185: Example
let mediaConfig = {`
 type: 'webrtc'.`
 audio: {
 contentType: 'audio/opus',
 channels: '2',
 bitrate: 132266,
 samplerate: 48000
 },
 video: {
 contentType: 'video/VP9; profile-id=1',
 width: 1280,
 height: 720,
 bitrate: 1234567,
 framerate: '25'
 }
};

result = await navigator.mediaCapabilities.decodingInfo(mediaConfig) 20

result = {
 supported: true,
 smooth: true,
 powerEfficient: false,
 webrtcCodec: {
 clockRate: 90000,
 mimeType: 'video/VP9',
 sdpFmtpLine: 'profile-id=0'
 }
}

https://github.com/w3c/media-capabilities/issues/185

Issue 95: Deprecate audio/video enumeration in getCapabilities
(cont’d)

● Scope comparison:
○ mediaCapabilities() returns information relating to audio and

video codecs supported by WebRTC.
○ RTCRtpSender/Receiver.getCapabilities().headerExtensions

returns information on supported header extensions.
○ RTCRtpSender/Receiver.getCapabilities().codecs returns

information on audio/video codecs as well as telephone-event,
CN, FEC, RTX, RED, etc.

21

https://github.com/w3c/webrtc-extensions/issues/95

Issue 95: RTCRtpReceiver.getCapabilities() Audio Example
https://webrtc.internaut.com/iit-2020/cap-dumper/

RTCRtpReceiver.getCapabilities(audio):
{
 "codecs": [
 {
 "channels": 2,
 "clockRate": 48000,
 "mimeType": "audio/red",
 "sdpFmtpLine": "111/111"
 },
 {
 "channels": 1,
 "clockRate": 32000,
 "mimeType": "audio/CN"
 },
 {
 "channels": 1,
 "clockRate": 16000,
 "mimeType": "audio/CN"
 },
 {
 "channels": 1,
 "clockRate": 48000,
 "mimeType": "audio/telephone-event"
 },
 {
 "channels": 1,
 "clockRate": 8000,
 "mimeType": "audio/telephone-event"
 }
], 22

https://github.com/w3c/webrtc-extensions/issues/95
https://webrtc.internaut.com/iit-2020/cap-dumper/

Issue 95: RTCRtpReceiver.getCapabilities() Video Example
https://webrtc.internaut.com/iit-2020/cap-dumper/

RTCRtpReceiver.getCapabilities(video):
{
 "codecs": [
 {
 "clockRate": 90000,
 "mimeType": "video/rtx"
 },
 {
 "clockRate": 90000,
 "mimeType": "video/VP9",
 "sdpFmtpLine": "profile-id=0"
 },
 {
 "clockRate": 90000,
 "mimeType": "video/red"
 },
 {
 "clockRate": 90000,
 "mimeType": "video/ulpfec"
 },
 {
 "clockRate": 90000,
 "mimeType": "video/flexfec-03",
 "sdpFmtpLine": "repair-window=10000000"

 }
23

https://github.com/w3c/webrtc-extensions/issues/95
https://webrtc.internaut.com/iit-2020/cap-dumper/

Issue 95: Questions
● Should mediaCapabilities() for WebRTC provide

information on all the codecs covered getCapabilities()?
○ telephone-event, CN, FEC, RTX, RED, etc.
○ Would these codecs ever be power-efficient or

smooth?
■ Would width, height, framerate, bitrate ever affect the

result?
● Is it a goal for mediaCapabilities() to deprecate

getCapabilities()?

24

https://github.com/w3c/webrtc-extensions/issues/95

Issue 100: Allow having inactive by default codecs
● Sergio:

○ “I am currently adding support for vp9 profiles 1 and 3 and h264 Hi10P
and Hi422P to libwebrtc, and the SDP generated is HUGE (see next
slide).

○ Most of these codec/profiles won't be used on a daily basis, so I would
be great if there could be a way of having them disabled by default, so
they don't appear on the offer (but they are negotiated on the answer)
and have an API to enable them by the app if needed. I don't think we
have anything similar at the moment.”

● Fippo:
○ “We've run into similar issues before, both when enabling flexfec-03

(recvonly because uhm...) as well as the (recvonly) YUV444 addition
that comes to Chrome 101 and this has already resulted in running out
of payload types in the upper range.... setCodecPreferences is great
but we have the same problem as with Issue 99.” 25

https://github.com/w3c/webrtc-extensions/issues/100
https://github.com/w3c/webrtc-extensions/issues/99

Issue 100: Allow having inactive by default codecs (cont’d)

26

Godzilla SDP!

Empire State Building
(not actual size)

https://github.com/w3c/webrtc-extensions/issues/100

Issue 100: Allow having inactive by default codecs (cont’d)

● How about adding an extension to the transceivers similar to the one for the rtp
header extensions?

partial interface RTCRtpTransceiver {
 undefined setOfferedCodecs(sequence<RTCRtpCodecCapability> codecsToOffer);
 readonly attribute FrozenArray<RTCRtpCodecCapability> codecsToOffer;
 readonly attribute FrozenArray<RTCRtpCodecCapability> codecsNegotiated;
};

● We would need to add a property offeredByDefault to

RTCRtpCodecCapability to signal if the codec is included in an initial offer by

default or not.

● What does the WG think?

27

https://github.com/w3c/webrtc-extensions/issues/100

WebRTC-PC Simulcast Issues
● Issue 2722, Issue 2723, Issue 2724 originate from

contradictions between RFC 8853 and WebRTC-PC Sections
4.4.1.5 and 5.4.1.

● Section 4.4.1.5 says:

28

https://github.com/w3c/webrtc-pc/issues/2722
https://github.com/w3c/webrtc-pc/issues/2723
https://github.com/w3c/webrtc-pc/issues/2724

Issue 2722: sRD(offer) completely overwrites pre-existing
transceiver.[[Sender]].[[SendEncodings]]

29

● The language that describes how to handle simulcast in a remote offer says that
[[SendEncodings]] is completely replaced based on the rids in the simulcast attribute.
○ While this works fine for transceivers that are not yet associated, for already

associated transceivers (which have already populated [[SendEncodings]]), this
is not appropriate.

○ [BA] Over-writing is prohibited in Section 4.4.1.5.

● We need to specify what happens on sRD(offer) when there is already an associated
transceiver.
○ Since we (rightly) allow sRD(answer) to remove pre-existing rids, we probably

need to allow sRD(offer) to remove pre-existing rids as well (since the base
simulcast spec requires the answerer to handle this situation).

○ We also need to ensure that the language around createAnswer does the right
thing if the offer tries to add a rid (ie; the answer will not contain that new rid).

https://github.com/w3c/webrtc-pc/issues/2722

Issue 2722: sRD(offer) completely overwrites pre-existing
transceiver.[[Sender]].[[SendEncodings]]

30

● PR 2155 over-writes existing transceiver:

● Does the recommended direction make sense?
● Should we mark this Issue “Ready for PR”?

https://github.com/w3c/webrtc-pc/issues/2722
https://github.com/w3c/webrtc-pc/pull/2155

31

Issue 2723: The prose around "simulcast envelope" falsely implies
that simulcast encodings can never be removed (cont’d)

32

● Spec says "Once the envelope is determined, layers cannot be removed.", but the
language for sRD(answer) says that if rids are rejected by an answer, they are removed.

[BA] This doesn’t appear to be a contradiction to me, since the envelope is set via sRD(), not
before.

● There are a couple of ways to fix this:
1. We remove this assurance from the section on "simulcast envelope", or
2. We only allow the first answer to remove rids from [[SendEncodings]].

Disallowing an answer to remove rids on a previously negotiated sender is probably not appropriate,
since this would violate the simulcast spec, which requires the offerer to handle this case regardless of
whether this is the initial negotiation or not. I think option 1 is the correct course of action here.

https://github.com/w3c/webrtc-pc/issues/2723

Issue 2723: The prose around "simulcast envelope" falsely implies
that simulcast encodings can never be removed (cont’d)

33

● What does the WG want to do?
○ Does the WG believe that there is a contradiction in the spec?
○ Is there an interest in enabling re-negotiation?

https://github.com/w3c/webrtc-pc/issues/2723

Issue 2724: The language around setting a description appears to
prohibit renegotiation of RIDs

● Section 4.4.1.5:
○ "5. If the description attempted to renegotiate RIDs, as described above,

then reject p with a newly created InvalidAccessError and abort these
steps."

● This prohibits a local re-offer from adding or removing RIDs.
● However, RFC 8853 indicates that an offerer cannot refuse to honor a

remote answer that rejects a previously negotiated RID.
○ RFC 8853 Section 5.3.2:

■ “An answerer that receives an offer with simulcast that lists a number
of simulcast streams MAY reduce the number of simulcast streams in
the answer, but it MUST NOT add simulcast streams.”

○ RFC 8853 Section 5.3.4:
■ “Offers inside an existing session follow the same rules as for initial

SDP offer, with these additions:” 34

https://github.com/w3c/webrtc-pc/issues/2724
https://www.w3.org/TR/webrtc/#dfn-reject
https://heycam.github.io/webidl/#dfn-create-exception
https://heycam.github.io/webidl/#invalidaccesserror

Issue 2724: The language around setting a description appears to
prohibit renegotiation of RIDs (cont’d)

● RFC 8853 also indicates that an answerer can’t refuse to honor a remote
offer because it removed a previously negotiated RID.
○ RFC 8853 Section 5.3.3:

■ “An offerer that receives an answer where some rid-id alternatives are
kept MUST be prepared to receive any of the kept "send"-directionrid-id
alternatives and MAY send any of the kept "receive"-direction rid-id
alternatives.

■ An offerer that receives an answer where some of the rid-ids are removed
compared to the offer MAY release the corresponding resources (codec,
transport, etc) in its "receive" direction and MUST NOT send any RTP
packets corresponding to the removed rid-ids.”

○ RFC 8853 Section 5.3.4:
■ “Creation of SDP answers and processing of SDP answers inside an

existing session follow the same rules as described above for initial SDP
offer/answer.” 35

https://github.com/w3c/webrtc-pc/issues/2724

Issue 2724: The language around setting a description appears to
prohibit renegotiation of RIDs (cont’d)

● What does the WG think?

36

https://github.com/w3c/webrtc-pc/issues/2724

RFC 8853 “Using Simulcast in SDP and RTP Sessions”
● Section 4 Overview

a=simulcast:send 1;2,3 recv 4

● If this line is included in an SDP offer, the "send" part indicates the offerer's capability and
proposal to send two simulcast RTP streams.

● Each simulcast stream is described by one or more RTP stream identifiers (rid-ids), and each
group of rid-ids for a simulcast stream is separated by a semicolon (";").

● When a simulcast stream has multiple rid-ids that are separated by a comma (","), they
describe alternative representations for that particular simulcast RTP stream. Thus,
the "send" part shown above is interpreted as an intention to send two simulcast RTP
streams. The first simulcast RTP stream is identified and restricted according to rid-id 1.

● The second simulcast RTP stream can be sent as two alternatives, identified and restricted
according to rid-ids 2 and 3.

● The "recv" part of the line shown here indicates that the offerer desires to receive a single
RTP stream (no simulcast) according to rid-id 4.

37

RFC 8853 “Using Simulcast in SDP and RTP Sessions”
● Section 5.3.2 Creating the SDP Answer

○ An answerer that receives an offer with simulcast containing an "a=simulcast" attribute listing alternative
rid-ids MAY keep all the alternative rid-ids in the answer, but it MAY also choose to remove any
nondesirable alternative rid-ids in the answer.

○ The answerer MUST NOT add any alternative rid-ids in the "send" direction in the answer that were not
present in the offer receive direction. The answerer MUST be prepared to receive any of the
receive-direction rid-id alternatives and MAY send any of the "send"-direction alternatives that are part of the
answer.

○ An answerer that receives an offer with simulcast that lists a number of simulcast streams MAY reduce the
number of simulcast streams in the answer, but it MUST NOT add simulcast streams.

● Section 5.3.3 Offerer processing the SDP Answer
○ An offerer that receives an answer where some rid-id alternatives are kept MUST be prepared to receive

any of the kept "send"-direction rid-id alternatives and MAY send any of the kept "receive"-direction rid-id
alternatives.

○ An offerer that receives an answer where some of the rid-ids are removed compared to the offer MAY
release the corresponding resources (codec, transport, etc) in its "receive" direction and MUST NOT send
any RTP packets corresponding to the removed rid-ids.

● RFC 8853 does not prohibit an answer from changing the order of the rids.
● RFC 8853 does not prohibit a re-offer from changing the order of the rids. 38

Discussion (End Time: 8:50 AM)

●

39

Voice Isolation Constraints (Harald)
Start Time: 8:50 AM
End Time: 9:10 AM

40

Issue 62: Voice Isolation Constraint

Microphone signals contain lots of information

● Human voices
● Music
● Keyboard typing noises
● Traffic noises

Sometimes the app knows what the recipient wants to hear

A common scenario is a human voice.

41

https://github.com/w3c/mediacapture-extensions/issues/47

Voice Isolation Constraint - How

There are multiple algorithms for isolating voice
- Stuff that works on pure audio samples
- Stuff that works with hardware support
- Stuff that invokes ML models
How it is done is not so important. The
desirable outcome is important.

42

Voice Isolation Constraint - What

Introduce a new boolean constraint:
voiceIsolation

Define the result as “attempt to remove
everything that is not a human voice”
May also choose to enhance the “most
important speaker” if multiple voices

43

Voice Isolation Constraint - Issues

● Feature detection
○ By MediaTrackCapabilities

● Interaction with noiseSuppression
○ Probably noise=false, voice=true makes no sense
○ Ignore noiseSuppression when voiceIsolation=true

44

Next steps

PR for adding the constraint
- If WG indicates that it’s happy.

45

Discussion (End Time: 9:10 AM)

●

46

mediacapture-handle/35

Suggested Content Hint (Elad)

Start time: 9:10 AM
End time: 9:25 AM

47

https://github.com/w3c/mediacapture-handle/issues/35

Reminder #1: contentHint
● One can’t always transmit video at both high frame rate and high resolution.
● Depending on the transmitted content, it might be preferable to degrade the frame

rate or the resolution.
○ With static content (e.g. slides), it is usually preferable to degrade framerate.
○ With dynamic content (e.g. video), it is often preferable to degrade resolution.

● A mechanism exists for specifying the application’s preference - contentHint.
● For video, possible values include “motion”, “detail” and “text”. Predictably:

○ contentHint = “text” results in frame rate being degraded before resolution.
○ contentHint = “motion” results in resolution being degraded before frame rate.

48

https://www.w3.org/TR/mst-content-hint/#dom-mediastreamtrack-contenthint

Reminder #2: Capture Handle Identity
● Capture Handle Identity is a mechanism by which a screen-captured tab

reveals its identity to the capturing application.
○ Without knowing it is being captured, the captured application sets its

“identity” - just in case it ends up being captured.
○ The capturing application can read this value.

49

What if an application could suggest to would-be capturers the best
contentHint to apply? An application could declare “if I am captured and
transmitted remotely, it’s preferable to degrade X first.”

Capturing tab

if (Predicate(captureHandle.origin)) {
 track.contentHint =
 captureHandle.suggestContentHint;
}

Where Predicate() is some function. It could examine
an allowlist or a blocklist, or it could trust any
captured application’s hint. It’s up to the capturing
application.

Slide with loads of text.
suggestedContentHint = “text”

Tying the two mechanisms together

50

Slide with an embedded video.
suggestedContentHint = “motion”

Corollary - Multiple Calls to setCaptureHandleConfig()
This serves as additional motivation for allowing setCaptureHandleConfig() to be
called multiple times. The content on the captured document can change - and
then, so does the suggestion, conveyed over Capture Handle.

(Recall that when the CaptureHandleConfig changes in the captured tab, an event
is fired in the capturing tab.)

51

Discussion (End Time: 9:25 AM)

●

52

mediacapture-screen-share/219

Avoid user-confusion by avoiding offering
undesired audio sources (Elad)

Time time: 9:25 AM
End time: 9:40 AM

53

https://github.com/w3c/mediacapture-screen-share/issues/219

● Consider a video conferencing application. It plays audio from remote participants over local
speakers.

● Assume the local user chooses to share their tab/screen along with tab/system audio.
● Our hypothetical VC client:

○ Does intend to relay captured tab-audio.
○ Does not intend to relay captured system-audio.

● When calling getDisplayMedia({video: …, audio: …}), it is not currently possible to specify
interest in X-audio and disinterest in Y-audio.

● The user agent therefore offers any kind of audio it can support. (Because other applications
do wish for both X- and Y-audio.)

● Users who try to share system-audio are confused that they were asked for system-audio,
approved system-audio, but are not relaying remotely system-audio.

Problem Statement

54

● The application needs a way to signal to the user agent, that only X-audio is requested.

Solution - Generally Speaking

55

Audio checkbox absentAudio checkbox present

navigator.mediaDevices.getDisplayMedia({
 video: true,
 audio: {browserAudioDesired, monitorAudioDesired},
});

Solution - Specific Suggestion

56

Discussion (End Time: 9:40 AM)

●

57

Region Capture (Youenn)
Start Time: 9:40 AM
End Time: 9:55 AM

58

● Various envisioned API-shape options
○ Expose API to Element or MediaDevices
○ Expose API as a method or as an attribute
○ Return result as a promise or as a CropTarget directly

Issue 11: CropTarget generation API

59

https://github.com/w3c/mediacapture-region/issues/11

● Attach API to either Element or MediaDevices

● Advantages for MediaDevices option
○ Grouping capture related APIs in a media-related place

■ Easing documentation and searchability
● Advantages for Element option

○ Partial interfaces is a well-known solution for documentation/searchability
■ E.g. Element.requestFullScreen

○ Avoid corner cases by removing unnecessary interaction with MediaDevices object
■ MediaDevices is attached to a single document

● MediaDevices is neutered when its document is detached
● Element might be removed/added from one document to another

■ MediaDevices is SecureContext, Element is not SecureContext

Issue 11: CropTarget generation API

60

partial interface Element {
 Promise<CropTarget> getCropTarget();
};
partial interface MediaDevices {
 Promise<CropTarget> produceCropTarget(Element
element);
};

https://github.com/w3c/mediacapture-region/issues/11

● In case of exposing API at Element level, API can either be a method or an attribute

● Attribute API mandates a single CropTarget per Element
○ Already possible to generate several CropTargets referencing the same Element

■ CropTarget is serializable
● Slight preference for a method API

○ Slightly simpler/more efficient for implementors

Issue 11: CropTarget generation API

61

partial interface Element {
 // As an attribute
 readonly attribute Promise<CropTarget> cropTarget;

 // As a method
 readonly Promise<CropTarget> getCropTarget();
};

https://github.com/w3c/mediacapture-region/issues/11

● Using promise API or not using promise API

● Advantages for promise-based API
○ Compatible with Chrome current prototype implementation

● Advantages for non-promise-based API
○ Consistent with existing web API design
○ Easier for web developers

■ No need for async functions
■ No corner cases where promise might get rejected

● Element moved to another document
● Element owned by a detached element or detached document

○ OK for implementors
■ Algorithms using CropTarget (cropTo e.g.) are asynchronous

Issue 11: CropTarget generation API

62

partial interface Element {
 CropTarget getCropTarget();
 Promise<CropTarget> getCropTarget();
};
partial interface MediaDevices {
 CropTarget produceCropTarget(Element element);
 Promise<CropTarget> produceCropTarget(Element element);
};

https://github.com/w3c/mediacapture-region/issues/11

Discussion (End Time: 9:55 AM)

●

63

CaptureController (Jan-Ivar)
If Time Permits

64

CaptureController
The number of features being considered added to screen capture is growing:

1. Capture Handle Identity
2. Capture Handle Actions
3. Conditional Focus #190
4. Multi-capture (picker multi-select)

The current getDisplayMedia API seems strained by all these additions.

A dedicated controller API might be desirable. But how to retrofit?

https://github.com/w3c/mediacapture-screen-share/issues/190

#12 …seems misplaced on the track
The mediacapture-handle spec notes:

Tracks can be cloned and transferred to workers. Giving a cross-origin messaging
channel that defeats storage partitioning, to all media consumers, seems undesirable.

Other track (consumer) settings don’t affect clones, or are arbitrated through constraints.

https://github.com/w3c/mediacapture-handle/issues/12#issuecomment-1051021052
https://w3c.github.io/mediacapture-handle/identity/index.html#capture-handle-via-getcapturehandle

CaptureController
The dedicated controller object:
 const controller = new CaptureController();
 const stream = await navigator.mediaDevices.getDisplayMedia({controller});
 const {origin, handle} = controller; // identity

 await controller.focus(); // conditional focus #190

 const actions = controller.getSupportedActions(); // actions
 if (actions.includes("nextslide")) {
 await controller.sendAction("nextslide");
 }

Or even:

 const controller = new CaptureController();
 const stream = await controller.getDisplayMedia();

https://github.com/w3c/mediacapture-screen-share/issues/190#issuecomment-925425536

Discussion

●

68

Thank you

Special thanks to:

WG Participants, Editors & Chairs

69

